Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Matching suits A standard deck of playing cards consists of 52 cards with 13 cards in each of four suits: spades, diamonds, clubs, and hearts. Suppose you shuffle the deck thoroughly and deal 5 cards face-up onto a table.

a. What is the probability of dealing five spades in a row?

b. Find the probability that all 5 cards on the table have the same suit.

Short Answer

Expert verified

The required answers are:

Part a) The probability is 0.0004952.

Part b) The probability is0.001981.

Step by step solution

01

Part a) Step 1: Given information

Given that,

Number of cards in a deck =52

Number of cards in each suit=13

02

Part a) Step 2: Calculation

The probability of taking five spades can be calculated using the following formula:

P(fivespades)=1352×1251×1150×1049×948=154440311875200=0.0004952

Therefore, the required probability is0.0004952

03

Part b) Step 1: Explanation

The likelihood of all five cards being of the same suit can be calculated as follows:

P(sameunits)=p(5spades)+P(5hearts)+P(5diamonds)+P(5clubs)=3366640+3366640+3366640+3366640=0.001981

Therefore, the required probability is0.001981.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Will Luke pass the quiz ? Luke’s teacher has assigned each student in his class an online quiz, which is made up of 10multiple-choice questions with 4options each. Luke hasn’t been paying attention in class and has to guess on each question. However, his teacher allows each student to take the quiz three times and will record the highest of the three scores. A passing score is 6or more correct out of 10. We want to perform a simulation to estimate the score that Luke will earn on the quiz if he guesses at random on all the questions.

a. Describe how to use a random number generator to perform one trial of the simulation. The dotplot shows Luke’s simulated quiz score in 50trials of the simulation.

b. Explain what the dot at 1represents.

c. Use the results of the simulation to estimate the probability that Luke passes the quiz.

d. Doug is in the same class and claims to understand some of the material. If he scored 8points on the quiz, is there convincing evidence that he understands some of the material? Explain your answer.

Gender and political party In January2017, 52%of U.S. senators were Republicans and

the rest were Democrats or Independents. Twenty-one percent of the senators were

females, and 47%of the senators were male Republicans. Suppose we select one of these

senators at random. Define events R: is a Republican and M: is male.

a. Find P(R ∪ M). Interpret this value in context.

b. Consider the event that the randomly selected senator is a female Democrat or

Independent. Write this event in symbolic form and find its probability.

Suppose that a student is randomly selected from a large high school. The probability

that the student is a senior is 0.22. The probability that the student has a driver’s license

is 0.30. If the probability that the student is a senior or has a driver’s license is 0.36,

what is the probability that the student is a senior and has a driver’s license?

a.0.060b.0.066c.0.080d.0.140e.0.160

Double fault!A professional tennis player claims to get 90%of her second serves in. In a recent match, the player missed 5of her first 20second serves. Is this a surprising result if the player’s claim is true? Assume that the player has a 0.10probability of missing each second serve. We want to carry out a simulation to estimate the probability that she would miss 5or more of her first 20second serves.

a. Describe how to use a random number generator to perform one trial of the simulation. The dot plot displays the number of second serves missed by the player out of the first 20second serves in simulated matches.

b. Explain what the dot at 6represents.

c. Use the results of the simulation to estimate the probability that the player would miss 5or more of her first 20second serves in a match.

d. Is there convincing evidence that the player misses more than 10%of her second serves? Explain your answer.

Rock smashes scissors Almost everyone has played the game rock-paper-scissors at some point. Two players face each other and, at the count of 3, make a fist (rock), an extended hand, palm side down (paper), or a “V” with the index and middle fingers (scissors). The winner is determined by these rules: rock smashes scissors; paper covers rock; and scissors cut paper. If both players choose the same object, then the game is a tie. Suppose that Player 1and Player 2 are both equally likely to choose rock, paper, or scissors. a. Give a probability model for this chance process. b. Find the probability that Player 1wins the game on the first throw .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free