Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 12: Q.AP4.3 - Cumulative AP Practise Test (page 827)

Sam has determined that the weights of unpeeled bananas from his local store have a mean of116grams with a standard deviation of 9grams. Assuming that the distribution of weight is approximately Normal, to the nearest gram, the heaviest 30%of these bananas weigh at least how much?

a.107g

b.121g

C.111g

d.125g

e.116g

Short Answer

Expert verified

The correct option is

b.121g

Step by step solution

01

Given information

Given in the question that, Sam has determined that the weights of unpeeled bananas from his local store have a mean of116gramswith a standard deviation of 9grams.

if the distribution of weight is approximately Normal, to the nearest gram, We need to find the heaviest 30%of the bananas weigh is at least how much.

02

Explanation

This is a given,

μ=116

σ=9

The cutoff value for the heaviest 30percent weighs the same as the lower 100%-30%=70%weighs.

Now we'll look for the z-score that corresponds to a likelihood of 70%in the normal probability. As a result, the zscore is:

z=0.50+0.02

=0.52

As a result,

z=x-μσ

=x-1169

role="math" localid="1654188929717" x-1169=0.52

x-116=0.52(9)

x=116+0.52(9)

x=120.68

As a result, the heaviest 30%of these bananas weigh at least 120.68g, or roughly121g. As a result, option (b) is the proper choice.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The swinging pendulum Refer to Exercise 33. We took the logarithm (base 10) of the values for both length and period. Here is some computer output from a linear regression analysis of the transformed data.


a. Based on the output, explain why it would be reasonable to use a power model to describe the relationship between the length and period of a pendulum.

b. Give the equation of the least-squares regression line. Be sure to define any variables you use.

c. Use the model from part (b) to predict the period of a pendulum with a length of 80cm.

Oil and residuals Researchers examined data on the depth of small defects in the Trans-Alaska Oil Pipeline. The researchers compared the results of measurements on 100defects made in the field with measurements of the same defects made in the laboratory. The figure shows a residual plot for the least-squares regression line based on these data. Explain why the conditions for performing inference about the slope β1 of the population regression line are not met.

Of the 98teachers who responded, 23.5%said that they had one or more tattoos.

a. Construct and interpret a 95%confidence interval for the true proportion of all teachers at the AP institute who would say they have tattoos.

b. Does the interval in part (a) provide convincing evidence that the proportion of all teachers at the institute who would say they have tattoos is different from 0.29. (the value cited in the Harris Poll report)? Justify your answer.

c. Two of the selected teachers refused to respond to the survey. If both of these teachers had responded, could your answer to part (b) have changed? Justify your answer.

The following back-to-back stem plots compare the ages of players from two minor-league hockey teams (1/7=17 years)

Which of the following cannot be justified from the plots?

a. Team A has the same number of players in their 30sas does Team B.

b. The median age of both teams is the same.

c. Both age distributions are skewed to the right.

d. The range of age is greater for Team A

e. There are no outliers by the1.5IQR rule in either distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free