Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Multiple Choice Select the best answer for Exercises 23-28. Exercises 23-28 refer to the following setting. To see if students with longer feet tend to be taller, a random sample of 25students was selected from a large high school. For each student, x=footlength&y=heightwere recorded. We checked that the conditions for inference about the slope of the population regression line are met. Here is a portion of the computer output from a least-squares regression analysis using these data:

Which of the following is a 95%confidence interval for the population slope β1?

a.3.0867±0.4117

b. 3.0867±0.8518

c.3.0867±0.8069

d.3.0867±0.8497

e.localid="1654193042763" 3.0867±0.8481

Short Answer

Expert verified

The correct option is option (b)

3.0867±0.8518

Step by step solution

01

Given Information

Given in the question that

n=25

c=0.95

we have to determine the correct option.

02

Explanation

The confidence interval is computed as

b±t*×SEb

where b1=3.0867and SEb1=0.4117which is given in the computer output.

The degree of difference is

df=n-2=25-2=23

The critical T value can be found in the Tdistribution table, so t*is2.069.

Therefore, the confidence interval is

localid="1654497378353" b±t*SEb=3.0867±2.069×0.4117=3.0867±0.8518

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Killing bacteria Expose marine bacteria to X-rays for time periods from 1to 15minutes. Here is a scatterplot showing the number of surviving bacteria (in hundreds) on a culture plate after each exposure time:


a. Below is a scatterplot of the natural logarithm of the number of surviving bacteria versus time. Based on this graph, explain why it would be reasonable to use an exponential model to describe the relationship between the count of bacteria and the time.


b). Here is the output from a linear regression analysis of the transformed data. Give the equation of the least-squares regression line. Be sure to defne any variables you use.

c. Use your model to predict the number of surviving bacteria after 17minutes.

Each morning, coffee is brewed in the school workroom by one of three faculty members, depending on who arrives first at work. Mr. Worcester arrives first 10% of the time, Dr. Currier arrives first 50%of the time, and Mr. Legacy arrives first on the remaining mornings. The probability that the coffee is strong when brewed by Dr. Currier is 0.1, while the corresponding probabilities when it is brewed by Mr. Legacy and Mr. Worcester are 0.2 and 0.3, respectively. Mr. Worcester likes strong coffee!
(a) What is the probability that on a randomly selected morning the coffee will be strong?
(b) If the coffee is strong on a randomly selected morning, what is the probability that it was brewed by Dr. Currier?

T12.11 Growth hormones are often used to increase the weight gain of chickens. In an experiment using 15 chickens, 3 chickens were randomly assigned to each of 5 different doses of growth hormone (0, 0.2, 0.4, 0.8, and 1.0 milligrams). The subsequent weight gain (in ounces) was recorded for each chicken. A researcher plots the data and finds that a linear relationship appears to hold. Here is computer output from a least-squares
regression analysis of these data. Assume that the conditions for performing inference about the slope β1of the true regression line are met.

a. Interpret each of the following in context:
i. The slope
ii. The y intercept
iii. The standard deviation of the residuals
iv. The standard error of the slope
b. Do the data provide convincing evidence of a linear relationship between dose and weight gain? Carry out a significance test at the α=0.05 level.
c. Construct and interpret a 95%confidence interval for the slope parameter

Marcella takes a shower every morning when she gets up. Her time in the shower varies according to a Normal distribution with mean 4.5minutes and standard deviation 0.9minutes.

a. Find the probability that Marcella’s shower lasts between 3and 6minutes on a randomly selected day.

b. If Marcella took a 7minute shower, would it be classified as an outlier by the 1.5IQRrule? Justify your answer.

c. Suppose we choose 10days at random and record the length of Marcella’s shower each day. What’s the probability that her shower time is 7minutes or greater on at least 2of the days?

d. Find the probability that the mean length of her shower times on these 10 days exceeds5 minutes.

Western lowland gorillas, whose main habitat is in central Africa, have a mean weight of 275pounds with a standard deviation of 40pounds. Capuchin monkeys, whose main habitat is Brazil and other parts of Latin America, have a mean weight of 6pounds with a standard deviation of 1.1pounds. Both distributions of weight are approximately Normally distributed. If a particular western lowland gorilla is known to weigh 345pounds, approximately how much would a capuchin monkey have to weigh, in pounds, to have the same standardized weight as the gorilla?

a. 4.08

b. 7.27

c. 7.93

d.8.20

e. There is not enough information to determine the weight of a capuchin monkey.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free