Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

T12.10We record data on the population of a particular country from 1960 to 2010. A
scatterplot reveals a clear curved relationship between population and year. However, a different scatterplot reveals a strong linear relationship between the logarithm (base 10) of the population and the year. The least-squares regression line for the transformed data is
log(population)=^13.5+0.01(year)
Based on this equation, which of the following is the best estimate for the population of the country in the year 2020?
a. 6.7
b. 812
c. 5,000,000
d. 6,700,000
e. 8,120,000

Short Answer

Expert verified

The correct answer is option (c) 5,000,000.

Step by step solution

01

Given information

To determine the best estimate for the population of the country in the year 2020.

02

Explanation

A scatterplot shows that the population and year have a clear curving relationship. A separate scatterplot, on the other hand, displays a significant linear link between the population logarithm and the year.
The following is the linear regression line:
ln(P~opulation)=-13.5+0.01(Year)
By 2020, the year will be replaced, and it will be:
ln(P~opulation)=-13.5+0.01(Year)
ln(Population)=-13.5+0.01(2020)
=6.7
Take each side's exponential:
Population=106.7
=5011872
5000000
As a result, option (c)5000000 is the correct option.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Heart weights of mammals Here are some data on the hearts of various mammals:

a. Make an appropriate scatterplot for predicting heart weight from length. Describe what you see.

b. Use transformations to linearize the relationship. Does the relationship between heart weight and length seem to follow an exponential model or a power model? Justify your answer.

c. Perform least-squares regression on the transformed data. Give the equation of your regression line. Define any variables you use.

d. Use your model from part (c) to predict the heart weight of a human who has a left ventricle6.8 cm long.

Which sampling method was used in each of the following settings, in order from I to IV?

I. A student chooses to survey the first 20 students to arrive at school.

II. The name of each student in a school is written on a card, the cards are well mixed, and 10 names are drawn.

III. A state agency randomly selects 50 people from each of the state’s senatorial districts.

IV. A city council randomly selects eight city blocks and then surveys all the voting-age residents on those blocks.

a. Voluntary response, SRS, stratified, cluster

b. Convenience, SRS, stratified, cluster

c. Convenience, cluster, SRS, stratified

d. Convenience, SRS, cluster, stratified

e. Cluster, SRS, stratified, convenience

Beer and BAC Refer to Exercise 5. Here is computer output from the least-squares regression analysis of the beer and blood alcohol data.

a. What is the estimate for β0? Interpret this value.

b. What is the estimate for β1? Interpret this value.

c. What is the estimate for σ? Interpret this value.

d. Give the standard error of the slope SEb1. Interpret this value.

How well do professional golfers putt from various distances to the hole? The scatterplot shows various distances to the hole (in feet) and the per cent of putts made at each distance for a sample of golfers.

The graphs show the results of two different transformations of the data. The first graph plots the natural logarithm of per cent made against distance. The second graph plots the natural logarithm of per cent made against the natural logarithm of distance.

a. Based on the scatterplots, would an exponential model or a power model provide a better description of the relationship between distance and per cent made? Justify your answer.

b. Here is computer output from a linear regression analysis of ln(per cent made) and distance. Give the equation of the least-squares regression line. Be sure to define any variables you use.

c. Use your model from part (b) to predict the per cent made for putts of 21 feet.

d. Here is a residual plot for the linear regression in part (b). Do you expect your prediction in part (c) to be too large, too small, or about right? Justify your answer.

Of the 98teachers who responded, 23.5%said that they had one or more tattoos.

a. Construct and interpret a 95%confidence interval for the true proportion of all teachers at the AP institute who would say they have tattoos.

b. Does the interval in part (a) provide convincing evidence that the proportion of all teachers at the institute who would say they have tattoos is different from 0.29. (the value cited in the Harris Poll report)? Justify your answer.

c. Two of the selected teachers refused to respond to the survey. If both of these teachers had responded, could your answer to part (b) have changed? Justify your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free