Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Park rangers are interested in estimating the weight of the bears that inhabit their state. The rangers have data on weight (in pounds) and neck girth (the distance around the neck in inches) for 10 randomly selected bears. Here is some regression output for these data

A bear has recently captured whose neck girth was 35inches and whose weight was 466.35pounds. If this bear were added to the data set, what would be the effect on the value of s?

a. It would decrease the value of s because the added point is an outlier.

b. It would decrease the value of s because the added point lies on the least-squares regression line.

c. It would increase the value of s because the added point is an outlier.

d. It would increase the value of s because the added point lies on the least-squares regression line.

e. It would have no effect on the value of s because the added point lies on the least-squares regression line.

Short Answer

Expert verified

The correct option is (b) It would decrease the value of s because the added point lies on the least-squares regression line.

Step by step solution

01

Given information

The given data is

02

Explanation

Park rangers are curious about the weight of the bears that live in their area. The question specifies the output of this data. As a result, if we add the bear with a neck girth of 35inches and a weight of 466.35pounds to the scatterplot, the appropriate point will be added to the scatterplot's top right corner.

Furthermore, this plot will be on the least square regression line because it is an extension of the least square regression line. Also, because the added data has a perfect prediction, the standard error of the estimates will drop.

As a result, our forecasts are more precise, resulting in fewer variations and, as a result, a reduced standard error of prediction.

Option (b) is correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each morning, coffee is brewed in the school workroom by one of three faculty members, depending on who arrives first at work. Mr. Worcester arrives first 10% of the time, Dr. Currier arrives first 50%of the time, and Mr. Legacy arrives first on the remaining mornings. The probability that the coffee is strong when brewed by Dr. Currier is 0.1, while the corresponding probabilities when it is brewed by Mr. Legacy and Mr. Worcester are 0.2 and 0.3, respectively. Mr. Worcester likes strong coffee!
(a) What is the probability that on a randomly selected morning the coffee will be strong?
(b) If the coffee is strong on a randomly selected morning, what is the probability that it was brewed by Dr. Currier?

Beer and BAC How well does the number of beers a person drinks predict his or her blood alcohol content (BAC)? Sixteen volunteers aged 21or older with an initial BAC of 0took part in a study to find out. Each volunteer drank a randomly assigned number of cans of beer. Thirty minutes later, a police officer measured their BAC. A least-squares regression analysis was performed on the data using x=number of beers and y=BAC. Here is a residual plot and a histogram of the residuals. Check whether the conditions for performing inference about the regression model are met.

Boyle's law If you have taken a chemistry or physics class, then you are probably familiar with Boyle's law: for gas in a confined space kept at a constant temperature, pressure times volume is a constant (in symbols, PV=kPV=k). Students in a chemistry class collected data on pressure and volume using a syringe and a pressure probe. If the true relationship between the pressure and volume of the gas is PV=k,PV=k, then

P=k1VP=k1V

Here is a graph of pressure versus a volume, 1volume, along with output from a linear regression analysis using these variables:

a. Give the equation of the least-squares regression line. Define any variables you use.

b. Use the model from part (a) to predict the pressure in the syringe when the volume is 17cubic centimeters.

Do taller students require fewer steps to walk a fixed distance? The scatterplot shows the relationship between x=height (in inches) and y=number of steps required to walk the length of a school hallway for a random sample of 36 students at a high school.

A least-squares regression analysis was performed on the data. Here is some computer output from the analysis

a. Describe what the scatterplot tells you about the relationship between height and the number of steps.

b. What is the equation of the least-squares regression line? Define any variables you use.

c. Identify the value of each of the following from the computer output. Then provide an interpretation of each value.

i.b0

ii. b1

iii. s

iv.SEb1

Prey attracts predators Here is one way in which nature regulates the size of animal populations: high population density attracts predators, which remove a higher proportion of the population than when the density of the prey is low. One study looked at kelp perch and their common predator, the kelp bass. On each of four occasions, the researcher set up four large circular pens on sandy ocean bottoms off the coast of southern California. He randomly assigned young perch to 1of 4pens so that one pen had 10perch, one pen had 20perch, one pen had 40perch, and the final pen had 60perch. Then he dropped the nets protecting the pens, allowing bass to swarm in, and counted the number of perch killed after two hours. A regression analysis was performed on the16 data points using x=number of perch in pen and y=proportion of perch killed. Here is a residual plot and a histogram of the residuals. Check whether the conditions for performing inference about the regression model are met.


Here is computer output from the least-squares regression analysis of the perch data.

a. Find the critical value for a 90%confidence interval for the slope of the true regression line. Then calculate the confidence interval.

b. Interpret the interval from part (a).

c. Explain the meaning of โ€œ90% confidentโ€ in this context.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free