Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Section I: Multiple ChoiceChoose the best answer for Questions AP4.1–AP4.40.
AP4.1 A major agricultural company is testing a new variety of wheat to determine whether it is more resistant to certain insects than the current wheat variety. The proportion of a current wheat crop lost to insects is 0.04. Thus, the company wishes to test the following hypotheses:
H0:p=0.04

Ha:p<0.04

Which of the following significance levels and sample sizes would lead to the highest power for this test?
a. n=200 and α=0.01
b. n=400and α=0.05
c.n=400and α=0.01
d. n=500and α=0.01
e. n=500 and α=0.05

Short Answer

Expert verified

The correct answer is option (e) n=500 and α=0.05.

Step by step solution

01

Given information

To determine the significance levels and sample sizes that lead to the highest power for the test.

02

Explanation

A large agricultural corporation is evaluating a new wheat type to see if it is more bug resistant than the current wheat variety. While the power for a given value of the alternative can potentially be calculated.

Simple notions can be used to address the question:
The larger the sample size size, better possible it is to identify variations.
The lower the power, the more difficult it is to reject the null hypothesis, and the more likely you are to commit a type Il error.
As a result, when alpha and sample size are both large, the power is maximized.
As a result, option (e) is the proper answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Beer and BAC Refer to Exercise 5. Here is computer output from the least-squares regression analysis of the beer and blood alcohol data.

a. What is the estimate for β0? Interpret this value.

b. What is the estimate for β1? Interpret this value.

c. What is the estimate for σ? Interpret this value.

d. Give the standard error of the slope SEb1. Interpret this value.

Multiple Choice Select the best answer for Exercises 23-28. Exercises 23-28 refer to the following setting. To see if students with longer feet tend to be taller, a random sample of 25students was selected from a large high school. For each student, x=footlength&y=heightere recorded. We checked that the conditions for inference about the slope of the population regression line are met. Here is a portion of the computer output from a least-squares regression analysis using these data:

26. Which of the following is the best interpretation of the value 0.4117in the computer output?

a. For each increase of 1cmin foot length, the average height increases by about0.4117cm

b. When using this model to predict height, the predictions will typically be off by about 0.4117cm.

c. The linear relationship between foot length and height accounts for 41.17%of the variation in height.

d. The linear relationship between foot length and height is moderate and positive.

e. In repeated samples of size 25the slope of the sample regression line for predicting height from foot length will typically vary from the population slope by about 0.4117.

Beer and BAC How well does the number of beers a person drinks predict his or her blood alcohol content (BAC)? Sixteen volunteers aged 21or older with an initial BAC of 0took part in a study to find out. Each volunteer drank a randomly assigned number of cans of beer. Thirty minutes later, a police officer measured their BAC. A least-squares regression analysis was performed on the data using x=number of beers and y=BAC. Here is a residual plot and a histogram of the residuals. Check whether the conditions for performing inference about the regression model are met.

a. Find the critical value for a 99%confidence interval for the slope of the true regression line. Then calculate the confidence interval.

b. Interpret the interval from part (a).

c. Explain the meaning of “localid="1654184305701" 99%confident” in this context

Here is computer output from the least-squares regression analysis of the beer and blood alcohol dat

Suppose that the mean weight of a certain breed of pig is 280pounds with a standard deviation of 80pounds. The distribution of weight for these pigs tends to be somewhat skewed to the right. A random sample of 100pigs is taken. Which of the following statements about the sampling distribution of the sample mean weight xis true?

a. It will be Normally distributed with a mean of 280pounds and a standard deviation of 80pounds.

b. It will be Normally distributed with a mean of 280pounds and a standard deviation of 8pounds.

c. It will be approximately Normally distributed with a mean of 280pounds and a standard deviation of80pounds.

d. It will be approximately Normally distributed with a mean of 280pounds and a standard deviation of 8pounds.

e. There is not enough information to determine the mean and standard deviation of the sampling distribution.

Students in Mr. Handford’s class dropped a kickball beneath a motion detector. The detector recorded the height of the ball (in feet) as it bounced up and down several times. Here is a computer output from a linear regression analysis of the transformed data of log(height) versus bounce number. Predict the highest point the ball reaches on its seventh bounce.

a. 0.35feet

b. 2.26feet

c. 0.37feet

d. 2.32feet

e. 0.43feet

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free