Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The students in Mr. Shenk’s class measured the arm spans and heights (in inches) of a random sample of 18students from their large high school. Here is computer output from a least-squares regression analysis of these data. Construct and interpret a 90%confidence interval for the slope of the population regression line. Assume that the conditions for performing inference are met.

PredictorCoefStdevt-ratioPConstant11.5475.6002.060.056Armspan0.840420.0809110.390.000S=1.613R-Sq=87.1%R-Sq(adj)=86.3%

Short Answer

Expert verified

We are 90%confident that the slope of the true regression line is between 0.69915114and0.98168886.

Step by step solution

01

Given Information

We need to construct and interpret a 90%confidence interval for the slope of the population regression line.

02

Simplify

Consider:

n=18b=0.84042SEb=0.08091

The degrees of freedom in sample size decreased by 2:

df=n-2=18-2=16

The critical t-value can be found in table B in the row of df=16and the column of c=90%

t'=1.746

The boundaries of the confidence interval then become:

b-t'×SEb=0.84042-1.746×0.08091=0.69915114
role="math" localid="1654161040846" b+t'×SEb=0.84042+1.746×0.08091=0.98168886

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Less mess? Kerry and Danielle wanted to investigate if tapping on a can of soda would reduce the amount of soda expelled after the can has been shaken. For their experiment, they vigorously shook 40cans of soda and randomly assigned each can to be tapped for 0seconds, 4seconds, 8seconds, or 12seconds. After opening the cans and waiting for the fizzing to stop, they measured the amount expelled (in milliliters) by subtracting the amount remaining from the original amount in the can. Here are their data:

Here is some computer output from a least-squares regression analysis of these data. Construct and interpret a 95%confidence interval for the slope of the true regression line.

The swinging pendulum Mrs. Hanrahan's precalculus class collected data on the length (in centimeters) of a pendulum and the time (in seconds) the pendulum took to complete one back-and-forth swing (called it's period). The theoretical relationship between a pendulum's length and its period is

period=2πglength

where gis a constant representing the acceleration due to gravity (in this case, g=980cm/s2g=980cm/s2). Here is a graph of the period versus length, length, along with output from a linear regression analysis using these variables.

a. Give the equation of the least-squares regression line. Define any variables you use.

b. Use the model from part (a) to predict the period of a pendulum with length 80cm.

Stats teachers’ cars A random sample of 21 AP® Statistics teachers was asked to report the age (in years) and mileage of their primary vehicles. Here is a scatterplot of the data:

Here is some computer output from a least-squares regression analysis of these data. Assume that the conditions for regression inference are met.

a. Verify that the 95%confidence interval for the slope of the population regression line is (9016.4,14,244.8).

b. A national automotive group claims that the typical driver puts 15,000miles per year on his or her main vehicle. We want to test whether AP® Statistics teachers are typical drivers. Explain why an appropriate pair of hypotheses for this test is role="math" localid="1654244859513" H0:β1=15,000versus Ha:β115,000.

c. Compute the standardized test statistic and P -value for the test in part (b). What conclusion would you draw at the α=0.05significance level?

d. Does the confidence interval in part (a) lead to the same conclusion as the test in part (c)? Explain your answer.

SAT Math scores Is there a relationship between the percent of high school graduates in each state who took the SAT and the state’s mean SAT Math score? Here is a residual plot from a linear regression analysis that used data from all 50states in a recent year. Explain why the conditions for performing inference about the slope β1 of the population regression line are not met.

Exercises T12.4–T12.8 refer to the following setting. An old saying in golf is “You drive for show and you putt for dough.” The point is that good putting is more important than long driving for shooting low scores and hence winning money. To see if this is the case, data from a random sample of 69 of the nearly 1000 players on the PGA Tour’s world money list are examined. The average number of putts per hole (fewer is better) and the player’s total winnings for the previous season are recorded and a least-squares regression line was fitted to the data. Assume the conditions for
inference about the slope are met. Here is computer output from the regression analysis:

T12.6 The P -value for the test in Exercise T12.5 is 0.0087. Which of the following is a correct interpretation of this result?
a. The probability there is no linear relationship between average number of putts per hole and total winnings for these 69 players is 0.0087.
b. The probability there is no linear relationship between average number of putts per hole and total winnings for all players on the PGA Tour’s world money list is 0.0087.
c. If there is no linear relationship between average number of putts per hole and total winnings for the players in the sample, the probability of getting a random sample of 69 players that yields a least-squares regression line with a slope of −4,139,198 or less is 0.0087.
d. If there is no linear relationship between average number of putts per hole and total winnings for the players on the PGA Tour’s world money list, the probability of getting a random sample of 69 players that yields a least-squares regression line with a slope of −4,139,198 or less is 0.0087.
e. The probability of making a Type I error is 0.0087.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free