Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do beavers benefit beetles? Researchers laid out 23circular plots, each 4meters in diameter, at random in an area where beavers were cutting down cottonwood trees. In each plot, they counted the number of stumps from trees cut by beavers and the number of clusters of beetle larvae. Ecologists think that the new sprouts from stumps are more tender than other cottonwood growth so beetles prefer them. If so, more stumps should produce more beetle larvae

Here is computer output for regression analysis of these data. Construct and interpret a99% confidence interval for the slope of the population regression line. Assume that the conditions for performing inference are met.

role="math" localid="1654159204144" PredictorCoefSECoefTPConstant1.2862.8530.450.657Stumps11.8941.13610.470.000S=6.41939R-Sq=83.9%R-Sq(adj)=83.1%

Short Answer

Expert verified

We are 99%confident that the slope of the true regression line is between .

Step by step solution

01

Given Information

We need to construct and interpret a 99%confidence interval for the slope of the population regression line.

02

Simplify

Consider:

n=23b=11.894SEb=1.136

The degrees of freedom in sample size decreased by 2:

df=n-2==23-2=21

The critical t-value can be found in table B in the row of df=21and in the column of c=99%

t'=2.831

The boundaries of the confidence interval then become:

b-t'×SEb=11.894-2.831×1.136=8.677984

b+t'×SEb=11.894+2.831×1.136=115.110016

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Recycle and Review Exercises 29-31 refer to the following setting. Does the color in which words are printed affect your ability to read them? Do the words themselves affect your ability to name the color in which they are printed? Mr. Starnes designed a study to investigate these questions using the 16 students in his AP Statistics class as subjects. Each student performed the following two tasks in random order while a partner timed his or her performance: (1) Read 32words aloud as quickly as possible, and (2) say the color in which each of 32words is printed as quickly as possible. Try both tasks for yourself using the word list given.

Color words (10.3) Now let's analyze the data,

a Calculate the difference (Colors-Words) (Colors - Words) for each subject and surmmarize thedistribution of differences with a boxplot. does the graph provide evidence of a difference in the average time required to perform the two tests? Explain your answer.

b. Explain why it is not safe to use paired & procedures to do inference about the mean difference in time in complete the Two tasks.

T12.2 Students in a statistics class drew circles of varying diameters and counted how many Cheerios could be placed in the circle. The scatterplot shows the results. The students want to determine an appropriate equation for the relationship between diameter and the number of Cheerios. The students decide to transform the data to make it appear more linear before computing a least-squares regression line. Which of the following transformations would be reasonable for them to try?

I. Plot the square root of the number of Cheerios against diameter.
II. Plot the cube of the number of Cheerios against diameter.
III. Plot the log of the number of Cheerios against the log of the diameter.
IV. Plot the number of Cheerios against the log of the diameter.

a. I and II
b. I and III
c. II and III
d. II and IV
e. I and IV

Women who are severely overweight suffer economic consequences, a study has shown. They have household incomes that are $6710less than other women, on average. The findings are from an eight-year observational study of 10,039randomly selected women who were 16-24years old when the research began. If the difference in average incomes is statistically significant, does this study give convincing evidence that being severely overweight causes a woman to have a lower income?

a. Yes; the study included both women who were severely overweight and women who were not.

b. Yes; the subjects in the study were selected at random.

c. Yes, because the difference in average incomes is larger than would be expected by chance alone.

d. No; the study showed that there is no connection between income and being severely overweight.

e. No; the study suggests an association between income and being severely overweight, but we can’t draw a cause-and-effect conclusion.

Exercises T12.4–T12.8 refer to the following setting. An old saying in golf is “You drive for show and you putt for dough.” The point is that good putting is more important than long driving for shooting low scores and hence winning money. To see if this is the case, data from a random sample of 69 of the nearly 1000 players on the PGA Tour’s world money list are examined. The average number of putts per hole (fewer is better) and the player’s total winnings for the previous season are recorded and a least-squares regression line was fitted to the data. Assume the conditions for inference about the slope are met. Here is computer output from the regression analysis:

T12.7 Which of the following is the 95% confidence interval for the slope β1 of the population regression line?
a. 7,897,179±3,023,782
b. 7,897,179±2.000(3,023,782)
c. 4,139,198±1,698,371
d. 4,139,198±1.960(1,698,371)
e. 4,139,198±2.000(1,698,371)

Exercises T12.4–T12.8 refer to the following setting. An old saying in golf is “You drive for show and you putt for dough.” The point is that good putting is more important than long driving for shooting low scores and hence winning money. To see if this is the case, data from a random sample of 69 of the nearly 1000 players on the PGA Tour’s world money list are examined. The average number of putts per hole (fewer is better) and the player’s total winnings for the previous season are recorded and a least-squares regression line was fitted to the data. Assume the conditions for
inference about the slope are met. Here is computer output from the regression analysis:

T12.6 The P -value for the test in Exercise T12.5 is 0.0087. Which of the following is a correct interpretation of this result?
a. The probability there is no linear relationship between average number of putts per hole and total winnings for these 69 players is 0.0087.
b. The probability there is no linear relationship between average number of putts per hole and total winnings for all players on the PGA Tour’s world money list is 0.0087.
c. If there is no linear relationship between average number of putts per hole and total winnings for the players in the sample, the probability of getting a random sample of 69 players that yields a least-squares regression line with a slope of −4,139,198 or less is 0.0087.
d. If there is no linear relationship between average number of putts per hole and total winnings for the players on the PGA Tour’s world money list, the probability of getting a random sample of 69 players that yields a least-squares regression line with a slope of −4,139,198 or less is 0.0087.
e. The probability of making a Type I error is 0.0087.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free