Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Less mess? Kerry and Danielle wanted to investigate if tapping on a can of soda would reduce the amount of soda expelled after the can has been shaken. For their experiment, they vigorously shook 40cans of soda and randomly assigned each can to be tapped for 0seconds, 4seconds, 8seconds, or 12seconds. After opening the cans and waiting for the fizzing to stop, they measured the amount expelled (in milliliters) by subtracting the amount remaining from the original amount in the can. Here are their data:

Here is some computer output from a least-squares regression analysis of these data. Construct and interpret a 95%confidence interval for the slope of the true regression line.

Short Answer

Expert verified

The slope of the regression line is 95 percent certain to be between -2.9962298and -2.2737702.

Step by step solution

01

Given information

We have to construct and interpret the 95%confidence interval for the slope of the true regression line.

02

Simplification

We will use the following formula :-

The boundaries of the confidence interval

bt*×SEbb+t*×SEb

The slope b1is calculated in the row "Tapping time" and the column "coef" of the following computer output:

b1=2.6350

In the row "tapping time" and the column "SE Coef" of the given computer output, the computed standard deviation of the slope SEb1is mentioned:

SEb1=0.1769

In the T distribution table, you'll find the crucial.

dfn2=402=38

df=38,as a result, it would use the nearest smaller degrees of freedom, df=30, in the column with c=95%: t*=2.042

The confidence interval's bounds

bt*×SEb=2.63502.042×0.1769=2.9962298b+t*×SEb=2.6350+2.042×0.1769=2.2737702

There are 95% confident that the slope of the regression line is between -2.9962298 and -2.2737702.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises T12.4–T12.8 refer to the following setting. An old saying in golf is “You drive for show and you putt for dough.” The point is that good putting is more important than long driving for shooting low scores and hence winning money. To see if this is the case, data from a random sample of 69 of the nearly 1000 players on the PGA Tour’s world money list are examined. The average number of putts per hole (fewer is better) and the player’s total winnings for the previous season are recorded and a least-squares regression line was fitted to the data. Assume the conditions for inference about the slope are met. Here is computer output from the regression analysis:

T12.7 Which of the following is the 95% confidence interval for the slope β1 of the population regression line?
a. 7,897,179±3,023,782
b. 7,897,179±2.000(3,023,782)
c. 4,139,198±1,698,371
d. 4,139,198±1.960(1,698,371)
e. 4,139,198±2.000(1,698,371)

T12.9 Which of the following would provide evidence that a power model of the form y=axp, wherep0and p1, describes the relationship between a response variable y and an explanatory variable x?
a. A scatterplot of y versus x looks approximately linear.
b. A scatterplot of Iny versus x looks approximately linear.
c. A scatterplot of y versus lnx looks approximately linear.
d. A scatterplot of Iny versus lnx looks approximately linear.
e. None of these

Multiple Choice Select the best answer for Exercises 23-28. Exercises 23-28 refer to the following setting. To see if students with longer feet tend to be taller, a random sample of 25students was selected from a large high school. For each student, x=footlength&y=heightere recorded. We checked that the conditions for inference about the slope of the population regression line are met. Here is a portion of the computer output from a least-squares regression analysis using these data:

26. Which of the following is the best interpretation of the value 0.4117in the computer output?

a. For each increase of 1cmin foot length, the average height increases by about0.4117cm

b. When using this model to predict height, the predictions will typically be off by about 0.4117cm.

c. The linear relationship between foot length and height accounts for 41.17%of the variation in height.

d. The linear relationship between foot length and height is moderate and positive.

e. In repeated samples of size 25the slope of the sample regression line for predicting height from foot length will typically vary from the population slope by about 0.4117.

Random assignment is part of a well-designed comparative experiment because

a. it is fairer to the subjects.

b. it helps create roughly equivalent groups before treatments are imposed on the subjects.

c. it allows researchers to generalize the results of their experiment to a larger population.

d. it helps eliminate any possibility of bias in the experiment.

e. it prevents the placebo effect from occurring.

Stats teachers’ cars A random sample of 21 AP® Statistics teachers was asked to report the age (in years) and mileage of their primary vehicles. Here is a scatterplot of the data:

Here is some computer output from a least-squares regression analysis of these data. Assume that the conditions for regression inference are met.

a. Verify that the 95%confidence interval for the slope of the population regression line is (9016.4,14,244.8).

b. A national automotive group claims that the typical driver puts 15,000miles per year on his or her main vehicle. We want to test whether AP® Statistics teachers are typical drivers. Explain why an appropriate pair of hypotheses for this test is role="math" localid="1654244859513" H0:β1=15,000versus Ha:β115,000.

c. Compute the standardized test statistic and P -value for the test in part (b). What conclusion would you draw at the α=0.05significance level?

d. Does the confidence interval in part (a) lead to the same conclusion as the test in part (c)? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free