Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the heights of a population of men are approximately Normally distributed, and the middle 99.7%have heights between 50and 70what is the standard deviation of the heights in this population?

a.1b.3c.4d.6e.12

Short Answer

Expert verified

The correct option is c. 4

Step by step solution

01

Given information

99.7%of the height is between 50and70

02

Calculation

The normal distribution rule states that 99.7% of data will fall within three standard deviations of the mean.

The mean is 6'0" since it is at the midpoint of the interval.

Also, 3 standard deviation is between 5'0" and 6'0" tall.

3σ=1'0''=12''

Dividing each side by 3:

σ=12'4=4''

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Comparing bone density Refer to Exercise 17 Judy’s friend Mary also had the bone density in her hip measured using DEXA. Mary is 35 years old. Her bone density is also reported as 948g/cm2 but her standardized score is z=0.50 The mean bone density in the hip for the reference population of 35-year-old women is 944grams/cm2

a. Whose bones are healthier for her age: Judy’s or Mary’s? Justify your answer.

b. Calculate the standard deviation of the bone density in Mary’s reference population. How does this compare with your answer to Exercise 17(b)? Are you surprised?

Comparing batting averages Three landmarks of baseball achievement are Ty Cobb’s batting average of 0.420 in 1911, Ted Williams’s 0.406 in 1941, and George Brett’s 0.390 in 1980 These batting averages cannot be compared directly because the distribution of major league batting averages has changed over the years. The distributions are quite symmetric, except for outliers such as Cobb, Williams, and Brett. While the mean batting average has been held roughly constant by rule changes and the balance between hitting

and pitching, the standard deviation has dropped over time. Here are the facts:

Find the standardized scores for Cobb, Williams, and Brett. Who had the best performance for the decade he played?

Batter up! In baseball, a player’s batting average is the proportion of times the player gets a hit out of his total number of times at-bat. The distribution of batting averages in a recent season for Major League Baseball players with at least 100 plate appearances can be modeled by a Normal distribution with mean μ=0.261 and standard deviation σ=0.034Sketch the Normal density curve. Label the mean and the points that are 1,2, and 3 standard deviations from the mean.

Flight times An airline flies the same route at the same time each day. The flight time varies according to a Normal distribution with unknown mean and standard deviation. On 15% of days, the flight takes more than an hour. On 3% of days, the flight lasts 75 minutes or more. Use this information to determine the mean and standard deviation of the flight time distribution.

Run fast! As part of a student project, high school students were asked to

sprint 50 yards and their times (in seconds) were recorded. A cumulative relative frequency graph of the sprint times is shown here.

a. One student ran the 50 yards in 8 seconds. Is a sprint time of 8 seconds unusually slow?

b. Estimate and interpret the 20th percentile of the distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free