Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the Normal distribution shown, the standard deviation is closest to

a.0.b.1.c.2.d.3.e.5.

Short Answer

Expert verified

The correct option is (d)3

Step by step solution

01

Given information

The figure is:

02

Explanation

The mean of the normal distribution is around 2 while the peak of the normal distribution is at 2

μ=2

The distance between the vertical line and the inflection point where the curve seems to be essentially a straight line is the standard deviation of the normal distribution. This distance is around 3 in this case, hence the standard deviation is approximately 3 in this situation.

σ=3

Hence, the correct option is (d).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The weights of laboratory cockroaches can be modeled with a Normal distribution having a mean of 80 grams and a standard deviation of 2 grams. The following figure is the Normal curve for this distribution of weights.

Point C on this Normal curve corresponds to

a. 84 grams.

b. 82 grams.

c. 78 grams.

d. 76 grams.

e. 74 grams.

Potato chips Refer to Exercise 47 Use the 689599.7 rule to answer the

following questions.

a. About what percent of bags weigh less than 9.02 ounces? Show your method clearly.

b. A bag that weighs9.07 ounces is at about what percentile in this distribution? Justify your answer.

Measuring bone density Individuals with low bone density (osteoporosis) have a high risk of broken bones (fractures). Physicians who are concerned about low bone density in patients can refer them for specialized testing. Currently, the most common method for testing bone density is dual-energy X-ray absorptiometry (DEXA). The bone density results for a patient who undergoes a DEXA test usually are reported in grams per square centimeter (g/cm2) and in standardized units. Judy, who is 25years old, has her bone density measured using DEXA. Her results indicate bone density in the hip of 948 g/cm2 and a standardized score of z=1.45The mean bone density in the hip is 956 g/cm2in the reference population of 25-year-old women like Judy.

a. Judy has not taken a statistics class in a few years. Explain to her in simple language what the standardized score reveals about her bone density.

b. Use the information provided to calculate the standard deviation of bone density in the reference population.

At some fast-food restaurants, customers who want a lid for their drinks get them from a large stack near the straws, napkins, and condiments. The lids are made with a small amount of flexibility so they can be stretched across the mouth of the cup and then snugly secured. When lids are too small or too large, customers can get very frustrated, especially if they end up spilling their drinks. At one particular restaurant, large drink cups require lids with a “diameter” of between 3.95 and 4.05 inches. The restaurant’s lid supplier claims that the diameter of its large lids follows a Normal distribution with a mean of 3.98 inches and a standard deviation of 0.02 inches. Assume that the supplier’s claim is true.

Put a lid on it! The supplier is considering two changes to reduce to 1% the percentage of its large-cup lids that are too small. One strategy is to adjust the mean diameter of its lids. Another option is to alter the production process, thereby decreasing the standard deviation of the lid diameters.

a. If the standard deviation remains at σ=0.02 inch, at what value should the

supplier set the mean diameter of its large-cup lids so that only 1% is too small to fit?

b. If the mean diameter stays at μ=3.98 inches, what value of the standard

deviation will result in only 1% of lids that are too small to fit?

c. Which of the two options in parts (a) and (b) do you think is preferable? Justify your answer. (Be sure to consider the effect of these changes on the percent of lids that are too large to fit.)σ=0.02

Shoes Refer to Exercise 1. Jackson, who reported owning 22 pairs of shoes, has a standardized score of z=1.10.

a. Interpret this z-score.

b. The standard deviation of the distribution of the number of pairs of shoes owned in this sample of 20 boys is 9.42. Use this information along with Jackson’s z-score to find the mean of the distribution.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free