Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Oranges A home gardener likes to grow various kinds of citrus fruit. One of his

mandarin orange trees produces oranges whose circumferences follow a Normal

distribution with mean 21.1cm and standard deviation 1.8cm.

a. What is the probability that a randomly selected orange from this tree has a

circumference greater than 22cm?

b. What is the probability that a random sample of 20 oranges from this tree has a mean circumference greater than 22 cm?

Short Answer

Expert verified

a. The probability is 0.3085.

b. The probability is0.012676

Step by step solution

01

Given Information

It is given that (μ)=21.1

(σ)=1.8

n=20

02

Probability that a randomly selected orange from this tree has acircumference greater than 22 cm

Let Xbe a random variable representing circumference of orange following normal distribution having mean as 21.1cm

Standard deviation 1.8cm

Required probability

P(X>22)=Px-μσ>22-21.11.8

=P(Z>0.5)

=1-P(Z<0.5)

=0.3085

03

Probability that a random sample of 20 oranges from this tree has a mean circumference greater than 22cm

Required probability:

P(X¯>22)=Px¯-μσn>22-21.11.820

=P(Z>2.236)

=1-P(Z<2.236)

=0.012676

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reading scores in Atlanta The Trial Urban District Assessment (TUDA) is a

government-sponsored study of student achievement in large urban school districts. TUDA gives a reading test scored from 0to 500. A score of 243is a “basic” reading level and a score of 281is “proficient.” Scores for a random sample of 1470eighth-graders in Atlanta had a mean of 240with standard deviation of 42.17.

a. Construct and interpret a 99%confidence interval for the mean reading test score of all Atlanta eighth-graders.

b. Based on your interval from part (a), is there convincing evidence that the mean reading test score for all Atlanta eighth-graders is less than the basic level? Explain your answer.

A school of fish Refer to Exercise 74.

a. Explain why it was necessary to inspect a graph of the sample data when checking the Normal/Large Sample condition.

b. According to the packaging, there are supposed to be 330goldfish in each bag of crackers. Based on the interval, is there convincing evidence that the average number of goldfish is less than 330? Explain your answer.

Election polling Gloria Chavez and Ronald Flynn are the candidates for mayor in a large city. We want to estimate the proportion p of all registered voters in the city who plan to vote for Chavez with 95%confidence and a margin of error no greater than 0.03. How large a random sample do we need?

Going to the prom Tonya wants to estimate the proportion of seniors in her school who plan to attend the prom. She interviews an SRS of 20of the 750seniors in her school and finds that 36plan to go to the prom.

Three branches According to a recent study by the Annenberg Foundation, only 36%of adults in the United States could name all three branches of government. This was based on a survey given to a random sample of1416U.S. adults.

a. Construct and interpret a 90%confidence interval for the proportion of all U.S. adults who could name all three branches of government.

b. Does the interval from part (a) provide convincing evidence that less than half of all U.S. adults could name all three branches of government? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free