Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Scientists examined the activity level of 7 fish at different temperatures. Fish activity was rated on a scale of 0 (no activity) to 100 (maximal activity). The temperature was measured in degrees Celsius. A computer regression printout and a residual plot are provided. Notice that the horizontal axis on the residual plot is labeled “Fitted value,” which means the same thing as “predicted value.”

Which of the following gives a correct interpretation of s in this setting?

a. For every 1°C increase in temperature, fish activity is predicted to increase by 4.785 units.

b. The typical distance of the temperature readings from their mean is about 4.785°C.

c. The typical distance of the activity level ratings from the least-squares line is about 4.785 units.

d. The typical distance of the activity level readings from their mean is about 4.785 units.

e. At a temperature of 0°C, this model predicts an activity level of 4.785 units.

Short Answer

Expert verified

The correct option is (c).

Step by step solution

01

Given information

02

Explanation

The average distance forecast is 4.78505The actual activity rating from the regression line is4.78505 The standard deviation of the residuals represented by the symbol s, and the standard deviation of the residuals indicates the average distance between actual and anticipated values.

Hence, the correct option is (c)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Managing diabetes People with diabetes measure their fasting plasma glucose (FPG, measured in milligrams per milliliter) after fasting for at least 8 hours. Another measurement, made at regular medical checkups, is called HbA. This is roughly the percent of red blood cells that have a glucose molecule attached. It measures average exposure to glucose over a period of several months. The table gives data on both HbA and FPG for 18 diabetics five months after they had completed a diabetes education class.

a. Make a scatterplot with HbA as the explanatory variable. Describe what you see.

b. Subject 18 is an outlier in the x-direction. What effect do you think this subject has on the correlation? What effect do you think this subject has on the equation of the least-squares regression line? Calculate the correlation and equation of the least-squares regression line with and without this subject to confirm your answer.

c. Subject 15 is an outlier in the y-direction. What effect do you think this subject has on the correlation? What effect do you think this subject has on the equation of the least-squares regression line? Calculate the correlation and equation of the least-squares regression line with and without this subject to confirm your answer.

Drilling down beneath a lake in Alaska yields chemical evidence of past changes in climate. Biological silicon, left by the skeletons of single-celled creatures called diatoms, is a measure of the abundance of life in the lake. A rather complex variable based on the ratio of certain isotopes relative to ocean water gives an indirect measure of moisture, mostly from snow. As we drill down, we look further into the past. Here is a scatterplot of data from 2300 to 12,000 years ago:

a. Identify the unusual point in the scatterplot and estimate its x and y coordinates.

b. Describe the effect this point has on

i. the correlation.

ii. the slope and y-intercept of the least-squares line.

iii. the standard deviation of the residuals.

The stock market Some people think that the behavior of the stock market in January predicts its behavior for the rest of the year. Take the explanatory variable x to be the percent change in a stock market index in January and the response variable y to be the change in the index for the entire year. We expect a positive correlation between x and y because the change during January contributes to the full year’s change. Calculation from data for an 18-year period gives x¯=1.75% sx=5.36% y¯=9.07% sy=15.35% r=0.596

a. Find the equation of the least-squares line for predicting full-year change from January change.

b. Suppose that the percent change in a particular January was 2 standard deviations above average. Predict the percent change for the entire year without using the least-squares line.

Driving speed and fuel consumption Exercise 9 (page 171) gives data on the fuel consumption y of a car at various speeds x. Fuel consumption is measured in liters of gasoline per 100 kilometers driven, and speed is measured in kilometers per hour. A statistical software package gives the least-squares regression line y^=11.058–0.01466x. Use the residual plot to determine if this linear model is appropriate.

Penguins diving A study of king penguins looked for a relationship between how deep the penguins dive to seek food and how long they stay underwater.41 For all but the shallowest dives, there is an association between x = depth (in meters) and y = dive duration (in minutes) that is different for each penguin. The study gives a scatterplot for one penguin titled “The Relation of Dive Duration (y) to Depth (x).” The scatterplot shows an association that is positive, linear, and strong.

a. Explain the meaning of the term positive association in this context.

b. Explain the meaning of the term linear association in this context.

c. Explain the meaning of the term strong association in this context.

d. Suppose the researchers reversed the variables, using x = dive duration and y = depth.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free