Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Drilling down beneath a lake in Alaska yields chemical evidence of past changes in climate. Biological silicon, left by the skeletons of single-celled creatures called diatoms, is a measure of the abundance of life in the lake. A rather complex variable based on the ratio of certain isotopes relative to ocean water gives an indirect measure of moisture, mostly from snow. As we drill down, we look further into the past. Here is a scatterplot of data from 2300 to 12,000 years ago:

a. Identify the unusual point in the scatterplot and estimate its x and y coordinates.

b. Describe the effect this point has on

i. the correlation.

ii. the slope and y-intercept of the least-squares line.

iii. the standard deviation of the residuals.

Short Answer

Expert verified

Part (a)(19.4,340)

Part (b)

i. Correlation decreases.

ii. Slope increases and y-intercept increases.

iii. Standard deviation increases.

Step by step solution

01

Part (a) Step 1: Given information

02

Part (a) Step 1: Given information

The point in the upper right corner of the scatterplot is the uncommon point since it deviates from the overall pattern in the other points. We can see that this point roughly correlates to 19.4 on the horizontal axis and 340 on the vertical axis, implying that the coordinates of the point are (19.4,340)

03

Part (b) Step 1: Explanation

The point in the upper right corner of the scatterplot is an uncommon point since it deviates from the overall pattern in the other points.

i. Because the uncommon point differs from the overall linear pattern in the other points, and because the correlation assesses the strength of the linear link between the variables, the unusual point reduces the correlation.

ii. Because the point is above the regression line to the right, we expect it to steepen the regression line, increasing the slope while also increasing the y-intercept.

iii. Because the uncommon point is the farthest away from the regression line, it will have the largest residual. When the odd point is included, the variability in the residuals grows, and the standard deviations of the residuals increase.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An AP® Statistics student designs an experiment to see whether today’s high school students are becoming too calculator-dependent. She prepares two quizzes, both of which contain 40 questions that are best done using paper-and-pencil methods. A random sample of 30 students participates in the experiment. Each student takes both quizzes—one with a calculator and one without—in random order. To analyze the data, the student constructs a scatterplot that displays a linear association between the number of correct answers with and without a calculator for the 30 students. A least-squares

regression yields the equation. calculator^ = −1.2 + 0.865 (pencil) r = 0.79

Which of the following statements is/are true?

I. If the student had used Calculator as the explanatory variable, the correlation would remain the same.

II. If the student had used Calculator as the explanatory variable, the slope of the least-squares line would remain the same.

III. The standard deviation of the number of correct answers on the paper-and-pencil quizzes was smaller than the standard deviation on the calculator quizzes.

a. I only

b. II only

c. III only

d. I and III only

e. I, II, and III

The following graph plots the gas mileage (in miles per gallon) of various cars from the same model year versus the weight of these cars (in thousands of pounds). The points marked with red dots correspond to cars made in Japan. From this plot, we may conclude that

a. there is a positive association between weight and gas mileage for Japanese cars.

b. the correlation between weight and gas mileage for all the cars is close to 1.

c. there is little difference between Japanese cars and cars made in other countries.

d. Japanese cars tend to be lighter in weight than other cars.

e. Japanese cars tend to get worse gas mileage than other cars.

There is a linear relationship between the number of chirps made by the striped ground cricket and the air temperature. A least-squares fit of some data collected by a biologist gives the model y^=25.2+3.3x , where x is the number of chirps per minute and y^ is the estimated temperature in degrees Fahrenheit. What is the predicted increase in temperature for an increase of = chirps per minute?

a. 3.3°F

b. 16.5°F

c. 25.2°F

d. 28.5°F

e. 41.7°F

By looking at the equation of the least-squares regression line, you can see that the correlation between height and arm span is

a. greater than zero.

b. less than zero.

c. 0.93.

d. 6.4.

e. Can’t tell without seeing the data.

Long jumps Here are the 40-yard-dash times (in seconds) and long-jump distances (in inches) for a small class of 12 students:

a. Sketch a scatterplot of the data using dash time as the explanatory variable.

b. Use technology to calculate the equation of the least-squares regression line for predicting the long-jump distance based on the dash time. Add the line to the scatterplot from part (a).

c. Explain why the line calculated in part (b) is called the “least-squares” regression line.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free