Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The power takeoff driveline on tractors used in agriculture is a potentially serious hazard to operators of farm equipment. The driveline is covered by a shield in new tractors, but for a variety of reasons, the shield is often missing on older tractors. Two types of shields are the bolt-on and the flip-up. It was believed that the boll-on shield was perceived as a nuisance by the operators and deliberately removed, but the flip-up shield is easily lifted for inspection and maintenance and may be left in place. In a study initiated by the US National Safety Council, random samples of older tractors with both types of shields were taken to see what proportion of shields were removed. Of 183tractors designed to have bolt-on shields, 35had been removed. Of the 156tractors with flip-up shields, 15were removed. We wish to perform a test of H0:pb=pfversus Ha:pb>pf, where pband pfare the proportions of all the tractors with bolt-on and flip-up shields removed, respectively. Which of the following is not a condition for performing the significance test ?

(a) Both populations are Normally distributed.

(b) The data come from two independent samples.

(c) Both samples were chosen at random.

(d) The counts of successes and failures are large enough to use Normal calculations.

(e) Both populations are at least 10times the corresponding sample sizes.

Short Answer

Expert verified

The correct answer is:

a. Both populations are Normally distributed.

Step by step solution

01

Given information

We are given random samples of old tractors with both types of shields, from a study by the US National Safety Council.

Conditions for performing a two-sample z-test: Random, Normal and Independent.

02

Explanation

Random: I'm satisfied because the samples were supplied to me at random.

Normal: Satisfied because there are at least 10 successes (35,15)and failures

(183-35=148,136-15=121)

Because the sample sizes are fewer than 10%of the population size, the independent is satisfied.

With the exception of (a), all requirements have been met. Because the number of successes is not close to half the sample size, (a) cannot be satisfied because the distribution is neither symmetric nor normal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Have a ball! Can students throw a baseball farther than a softball? To find out, researchers conducted a study involving 24randomly selected students from a large high school. After warming up, each student threw a baseball as far as he or she could and threw a softball as far as he she could, in a random order. The distance in yards for each throw was recorded. Here are the data, along with the difference (Baseball โ€“ Softball) in distance thrown, for each student:

a. Explain why these are paired data.

b. A boxplot of the differences is shown. Explain how the graph gives some evidence that students like these can throw a baseball farther than a softball.

c. State appropriate hypotheses for performing a test about the true mean difference. Be sure to define any parameter(s) you use.

d. Explain why the Normal/Large Sample condition is not met in this case. The mean difference (Baseballโˆ’Softball) in distance thrown for these 24students is xdiff = 6.54yards. Is this a surprisingly large result if the null hypothesis is true? To find out, we can perform a simulation assuming that students have the same ability to throw a baseball and a softball. For each student, write the two distances thrown on different note cards. Shuffle the two cards and designate one distance to baseball and one distance to softball. Then subtract the two distances (Baseballโˆ’Softball) . Do this for all the students and find the simulated mean difference. Repeat many times. Here are the results of 100trials of this simulation

e. Use the results of the simulation to estimate the P-value. What conclusion would you draw ?

A survey asked a random sample of U.S. adults about their political party affiliation and how long they thought they would survive compared to most people in their community if an apocalyptic disaster were to strike. The responses are summarized in the following two-way table.

Suppose we select one of the survey respondents at random. Which of the following probabilities is the largest?

a. P(Independent and Longer)

b. P(Independent or Not as long)

c. P(Democrat 3051526=0.200=20.0%| Not as long)

d. P(About as long 3051526=0.200=20.0%| Democrat)

e. P(About as long)

Which of the following will increase the power of a significance test?

a. Increase the Type II error probability.

b. Decrease the sample size.

c. Reject the null hypothesis only if the P-value is less than the significance level.

d. Increase the significance level ฮฑ.

e. Select a value for the alternative hypothesis closer to the value of the null hypothesis.

Artificial trees? An association of Christmas tree growers in Indiana wants to know if there is a difference in preference for natural trees between urban and rural households. So the association sponsored a survey of Indiana households that had a Christmas tree last year to find out. In a random sample of 160rural households, 64had a natural tree. In a separate random sample of 261urban households, 89had a natural tree. A 95%confidence interval for the difference (Rural โ€“ Urban) in the true proportion of households in each population that had a natural tree is -0.036to0.154. Does the confidence interval provide convincing evidence that the two population proportions are equal? Explain your answer.

Which inference method?

a. A city planner wants to determine if there is convincing evidence of a difference in the average number of cars passing through two different intersections. He randomly selects 12times between 6:00a.m. and 10:00p.m., and he and his assistant count the number of cars passing through each intersection during the 10-minute interval that begins at that time.

b. Are more than 75%of Toyota owners generally satisfied with their vehicles? Letโ€™s design a study to find out. Weโ€™ll select a random sample of 400 Toyota owners. Then weโ€™ll ask each individual in the sample, โ€œWould you say that you are generally satisfied with your Toyota vehicle?โ€

c. Are male college students more likely to binge drink than female college students? The Harvard School of Public Health surveys random samples of male and female undergraduates at four-year colleges and universities about whether they have engaged in binge drinking.

d. A bank wants to know which of two incentive plans will most increase the use of its credit cards and by how much. It offers each incentive to a group of current credit card customers, determined at random, and compares the amount charged during the following 6 months.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free