Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The power takeoff driveline on tractors used in agriculture is a potentially serious hazard to operators of farm equipment. The driveline is covered by a shield in new tractors, but for a variety of reasons, the shield is often missing on older tractors. Two types of shields are the bolt-on and the flip-up. It was believed that the boll-on shield was perceived as a nuisance by the operators and deliberately removed, but the flip-up shield is easily lifted for inspection and maintenance and may be left in place. In a study initiated by the US National Safety Council, random samples of older tractors with both types of shields were taken to see what proportion of shields were removed. Of 183tractors designed to have bolt-on shields, 35had been removed. Of the 156tractors with flip-up shields, 15were removed. We wish to perform a test of H0:pb=pfversus Ha:pb>pf, where pband pfare the proportions of all the tractors with bolt-on and flip-up shields removed, respectively. Which of the following is not a condition for performing the significance test ?

(a) Both populations are Normally distributed.

(b) The data come from two independent samples.

(c) Both samples were chosen at random.

(d) The counts of successes and failures are large enough to use Normal calculations.

(e) Both populations are at least 10times the corresponding sample sizes.

Short Answer

Expert verified

The correct answer is:

a. Both populations are Normally distributed.

Step by step solution

01

Given information

We are given random samples of old tractors with both types of shields, from a study by the US National Safety Council.

Conditions for performing a two-sample z-test: Random, Normal and Independent.

02

Explanation

Random: I'm satisfied because the samples were supplied to me at random.

Normal: Satisfied because there are at least 10 successes (35,15)and failures

(183-35=148,136-15=121)

Because the sample sizes are fewer than 10%of the population size, the independent is satisfied.

With the exception of (a), all requirements have been met. Because the number of successes is not close to half the sample size, (a) cannot be satisfied because the distribution is neither symmetric nor normal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Starting in the 1970s, medical technology has enabled babies with very low birth weight (VLBW, less than1500grams, or about 3.3 pounds) to survive without major handicaps. It was noticed that these children nonetheless had difficulties in school and as adults. A long-term study has followed 242 randomly selected VLBW babies to age 20years, along with a control group of 233 randomly selected babies from the same population who had normal birth weight. 50

a. Is this an experiment or an observational study? Why?

b. At age20,179 of the VLBW group and 193 of the control group had graduated from high school. Do these data provide convincing evidence at the ฮฑ=0.05 significance level that the graduation rate among VLBW babies is less than for normal-birth-weight babies?

Response bias Does the appearance of the interviewer influence how people respond to a survey question? Ken (white, with blond hair) and Hassan (darker, with Middle Eastern features) conducted an experiment to address this question. They took turns (in a random order) walking up to people on the main street of a small town, identifying themselves as students from a local high school, and asking them, โ€œDo you support President Obamaโ€™s decision to launch airstrikes in Iraq?โ€ Of the 50people Hassan spoke to, 11said โ€œYes,โ€ while 21of the 44people Ken spoke to said โ€œYes.โ€ Construct and interpret a 90%confidence interval for the difference in the proportion of people like these who would say they support President Obamaโ€™s decision when asked by Hassan versus when asked by Ken.

A scatterplot and a least-squares regression line are shown in the figure. What effect does point P have on the slope of the regression line and the correlation?

a. Point P increases the slope and increases the correlation.

b. Point P increases the slope and decreases the correlation.

c. Point P decreases the slope and decreases the correlation.

d. Point P decreases the slope and increases the correlation .

e. No conclusion can be drawn because the other coordinates are unknown.

Friday the 13th Do people behave differently on Friday the13th? Researchers collected data on the number of shoppers at a random sample of 45grocery stores on Friday the 6thand Friday the 13thin the same month. Then they calculated the difference (subtracting in the order6thminus13th ) in the number of shoppers at each store on these 2days. The mean difference is -46.5and the standard deviation of the differences is 178.0.

a. If the result of this study is statistically significant, can you conclude that the difference in shopping behavior is due to the effect of Friday the 13thon peopleโ€™s behavior? Why or why not?

b. Do these data provide convincing evidence at theฮฑ=0.05level that the number of shoppers at grocery stores on these 2days differs, on average?

c. Based on your conclusion in part (a), which type of errorโ€”a Type I error or a Type II errorโ€”could you have made? Explain your answer.

Have a ball! Can students throw a baseball farther than a softball? To find out, researchers conducted a study involving 24randomly selected students from a large high school. After warming up, each student threw a baseball as far as he or she could and threw a softball as far as he she could, in a random order. The distance in yards for each throw was recorded. Here are the data, along with the difference (Baseball โ€“ Softball) in distance thrown, for each student:

a. Explain why these are paired data.

b. A boxplot of the differences is shown. Explain how the graph gives some evidence that students like these can throw a baseball farther than a softball.

c. State appropriate hypotheses for performing a test about the true mean difference. Be sure to define any parameter(s) you use.

d. Explain why the Normal/Large Sample condition is not met in this case. The mean difference (Baseballโˆ’Softball) in distance thrown for these 24students is xdiff = 6.54yards. Is this a surprisingly large result if the null hypothesis is true? To find out, we can perform a simulation assuming that students have the same ability to throw a baseball and a softball. For each student, write the two distances thrown on different note cards. Shuffle the two cards and designate one distance to baseball and one distance to softball. Then subtract the two distances (Baseballโˆ’Softball) . Do this for all the students and find the simulated mean difference. Repeat many times. Here are the results of 100trials of this simulation

e. Use the results of the simulation to estimate the P-value. What conclusion would you draw ?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free