Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Starting in the 1970s, medical technology has enabled babies with very low birth weight (VLBW, less than1500grams, or about 3.3 pounds) to survive without major handicaps. It was noticed that these children nonetheless had difficulties in school and as adults. A long-term study has followed 242 randomly selected VLBW babies to age 20years, along with a control group of 233 randomly selected babies from the same population who had normal birth weight. 50

a. Is this an experiment or an observational study? Why?

b. At age20,179 of the VLBW group and 193 of the control group had graduated from high school. Do these data provide convincing evidence at the α=0.05 significance level that the graduation rate among VLBW babies is less than for normal-birth-weight babies?

Short Answer

Expert verified

a) Yes, An observational study differs from an experimental design in that the researchers have control over the experiment.

b) The value will beP=P(Z<-2.34)=0.0096.

Step by step solution

01

Part (a) Step 1: Given information 

We have to tell is this an experiment or an observational study.

02

Part (a) Step 2: Explanation

The experimenters have no way of knowing whether a baby would survive without major disabilities. This is an observational research project.

An observational study differs from an experimental design in that the researchers have control over the experiment.

Because the experimenters cannot control the factors that may lead to a handicapped person, they must conduct an observational study.

03

Part (b) Step 1: Given information 

We have to tell the significance level that the graduation rate among VLBW babies is less than for normal-birth-weight babies.

04

Part (b) Step 2: Explanation

Random, Independent (10 percent condition), and Normal are the three conditions for generating a hypothesis test for the population proportion pp (large counts).

Because the babies were chosen at random from different populations, I'm satisfied.

Independent: Content because the VLBW newborns account for less than 10% of all VLBW babies, and the normal-birth-weight babies account for less than 10% of all normal-birth-weight kids (assuming that there are more than VLBW babies and assuming that there are more than normal-birth-weight babies)

The static value:

z=p^1-p^2-p1-p2p^p1-p^p1n1+1n2=0.7397-0.82830.7832(1-0.7832)1242+1233-2.34

P=P(Z<-2.34)=0.0096

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Researchers suspect that Variety A tomato plants have a different average yield than Variety B tomato plants. To find out, researchers randomly select10Variety A and10Variety B tomato plants. Then the researchers divide in half each of10small plots of land in different locations. For each plot, a coin toss determines which half of the plot gets a Variety A plant; a Variety B plant goes in the other half. After harvest, they compare the yield in pounds for the plants at each location. The10differences (Variety A − Variety B) in yield are recorded. A graph of the differences looks roughly symmetric and single-peaked with no outliers. The mean difference is x-=0.343051526=0.200=20%x-A-B=0.34and the standard deviation of the differences is s A-B=0.833051526=0.200=20%=sA-B=0.83.LetμA-B=3051526=0.200=20%μA−B = the true mean difference (Variety A − Variety B) in yield for tomato plants of these two varieties.

The P-value for a test of H0: μA−B=03051526=0.200=20%versus Ha: μA−B≠0 is 0.227. Which of the following is the

correct interpretation of this P-value?

a. The probability that μA−B is0.227.

b. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference of0.34is0.227.

c. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference of0.34or greater is0.227.

d. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference greater than or equal to0.34or less than or equal to −0.34is0.227.

e. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is not 0, the probability of getting a sample mean difference greater than or equal to 0.34or less than or equal to −0.34is0.227.

I want red!A candy maker offers Child and Adult bags of jelly beans with

different color mixes. The company claims that the Child mix has 30%red jelly beans, while the Adult mix contains 15%red jelly beans. Assume that the candy maker’s claim is true. Suppose we take a random sample of 50jelly beans from the Child mix and a separate random sample of 100jelly beans from the Adult mix. Let p^Cand p^Abe the sample proportions of red jelly beans from the Child and

Adult mixes, respectively.

a. What is the shape of the sampling distribution of p^C-p^A? Why?

b. Find the mean of the sampling distribution.

c. Calculate and interpret the standard deviation of the sampling distribution.

The power takeoff driveline on tractors used in agriculture is a potentially serious hazard to operators of farm equipment. The driveline is covered by a shield in new tractors, but for a variety of reasons, the shield is often missing on older tractors. Two types of shields are the bolt-on and the flip-up. It was believed that the boll-on shield was perceived as a nuisance by the operators and deliberately removed, but the flip-up shield is easily lifted for inspection and maintenance and may be left in place. In a study initiated by the US National Safety Council, random samples of older tractors with both types of shields were taken to see what proportion of shields were removed. Of 183tractors designed to have bolt-on shields, 35had been removed. Of the 156tractors with flip-up shields, 15were removed. We wish to perform a test of H0:pb=pfversus Ha:pb>pf, where pband pfare the proportions of all the tractors with bolt-on and flip-up shields removed, respectively. Which of the following is not a condition for performing the significance test ?

(a) Both populations are Normally distributed.

(b) The data come from two independent samples.

(c) Both samples were chosen at random.

(d) The counts of successes and failures are large enough to use Normal calculations.

(e) Both populations are at least 10times the corresponding sample sizes.

Children make choices Many new products introduced into the market are

targeted toward children. The choice behavior of children with regard to new products is of particular interest to companies that design marketing strategies for these products. As part of one study, randomly selected children in different age groups were compared on their ability to sort new products into the correct product category (milk or juice). Here are some of the data:

Researchers want to know if a greater proportion of 6- to 7-year-olds can sort correctly than 4- to5-year-olds.

a. State appropriate hypotheses for performing a significance test. Be sure to define the parameters of interest.

b. Check if the conditions for performing the test are met.

Ban junk food! A CBS News poll asked 606 randomly selected women and 442

randomly selected men, “Do you think putting a special tax on junk food would encourage more people to lose weight?” 170 of the women and 102 of the men said “Yes.” A 99% confidence interval for the difference (Women – Men) in the true proportion of people in each population who would say “Yes” is −0.020to0.120. Does the confidence interval provide convincing evidence that the two population proportions are equal? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free