Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sports Illustrated planned to ask a random sample of Division I college athletes, “Do you believe performance-enhancing drugs are a problem in college sports?” Which of the following is the smallest number of athletes that must be interviewed to estimate the true proportion who believe performance-enhancing drugs are a problem within ±2% with 90% confidence?

a.17b.21c.1680d.1702e.2401

Short Answer

Expert verified

The correct optionis

a.n=zα/220.25ME2=1.652×0.250.0221702

Step by step solution

01

Given information

We have to find the smallest number of athletes that must be interviewed to estimate the true proportion.

02

Explanation 

Formula sample size:

p^known:n=zα/22p^q^ME2=zα/22p^(1-p^)ME2

p^unknown:n=zα/220.25ME2

the sample size is:

n=zα/220.25ME2=1.652×0.250.0221702

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Thirty-five people from a random sample of 125 workers from Company A admitted

to using sick leave when they weren’t really ill. Seventeen employees from a random

sample of 68 workers from Company B admitted that they had used sick leave when

they weren’t ill. Which of the following is a 95% confidence interval for the difference

in the proportions of workers at the two companies who would admit to using sick

leave when they weren’t ill?

(a) 0.03±(0.28)(0.72)125+(0.25)(0.75)68

(b) 0.03±1.96(0.28)(0.72)125+(0.25)(0.75)68

(c) 0.03±1.645(0.28)(0.72)125+(0.25)(0.75)68

(d) 0.03±1.96(0.269)(0.731)125+(0.269)(0.731)68

(e)0.03±1.645(0.269)(0.731)125+(0.269)(0.731)68

Shortly before the 2012presidential election, a survey was taken by the school newspaper at a very large state university. Randomly selected students were asked, “Whom do you plan to vote for in the upcoming presidential election?” Here is a two-way table of the responses by political persuasion for 1850students:

Candidate of

choice


Political persuasion

Democrat
Republican
Independent
Total
Obama
925
78
26
1029
Romney
78
598
19
695
Other
2
8
11
21
Undecided
32
28
45
105
Total
1037
712
101
1850

Which of the following statements about these data is true?

a. The percent of Republicans among the respondents is 41%.

b. The marginal relative frequencies for the variable choice of candidate are given by

Obama: 55.6%; Romney: 37.6%; Other: 1.1%; Undecided: 5.7%.

c. About 11.2%of Democrats reported that they planned to vote for Romney.

d. About 44.6%of those who are undecided are Independents.

e. The distribution of political persuasion among those for whom Romney is the

candidate of choice is Democrat: 7.5%; Republican: 84.0%; Independent: 18.8%.

A random sample of size nwill be selected from a population, and the proportion of those in the sample who have a Facebook page will be calculated. How would the margin of error for a 95%confidence interval be affected if the sample size were increased from 50to 200?

(a) It remains the same.

(b) It is multiplied by 2.

(c) It is multiplied by 4.

(d) It is divided by 2.

(e) It is divided by 4.

Which of the following will increase the power of a significance test?

a. Increase the Type II error probability.

b. Decrease the sample size.

c. Reject the null hypothesis only if the P-value is less than the significance level.

d. Increase the significance level α.

e. Select a value for the alternative hypothesis closer to the value of the null hypothesis.

Treating AIDS The drug AZT was the first drug that seemed effective in delaying

the onset of AIDS. Evidence for AZT’s effectiveness came from a large randomized

comparative experiment. The subjects were 870volunteers who were infected with HIV,

the virus that causes AIDS, but did not yet have AIDS. The study assigned 435of the

subjects at random to take 500milligrams of AZT each day and another 435to take a

placebo. At the end of the study, 38of the placebo subjects and 17of the AZT subjects

had developed AIDS.

a. Do the data provide convincing evidence at the α=0.05level that taking AZT lowers the proportion of infected people like the ones in this study

who will develop AIDS in a given period of time?

b. Describe a Type I error and a Type II error in this setting and give a consequence of

each error.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free