Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X represent the outcome when a fair six-sided die is rolled. For this random variable, μX=3.5and σX=1.71. If the die is rolled 100 times, what is the approximate probability that the sum is at least 375?

a. 0.0000

b.0.0017

c.0.0721

d.0.4420

e.0.9279

Short Answer

Expert verified

The probability is 0.0721

Step by step solution

01

Given Information

We have to find the probability that sum is at least 375.

02

Simplification

Population mean (μx)=3.5

Population standard deviation(σx)=1.71

Sample size (n)=100

The mean can be calculated as follows:

x-=375100=3.75

The likelihood that the sum is at least 375can be computed as follows:

P(x-3.75)=Pxμσn3.753.51.71100=P(Z1.47)=1P(Z1.47)=0.0721

Thus, the required probability is0.0721.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 96% confidence interval for the proportion of the labor force that is unemployed in a certain city is (0.07,0.10). Which of the following statements is true?

a. The probability is 0.96 that between 7%and10% of the labor force is unemployed.

b. About 96% of the intervals constructed by this method will contain the true proportion of the labor force that is unemployed in the city.

c. In repeated samples of the same size, there is a 96% chance that the sample proportion will fall between 0.07and0.10.

d. The true rate of unemployment in the labor force lies within this interval 96% of the time.

e. Between 7%and10%of the labor force is unemployed 96% of the time.

Flight times The pilot suspects that the Dubai-to-Doha outbound flight typically takes longer. If so, the difference (Outbound−Return) in flight times will be positive on more days than it is negative. What if either flight is equally likely to take longer? Then we can model the outcome on a randomly selected day with a coin toss. Heads means the Dubai-to-Doha outbound flight lasts longer; tails means the Doha-to-Dubai return flight lasts longer. To imitate a random sample of 12days, imagine tossing a fair coin 12times.

a. Find the probability of getting 11or more heads in 12tosses of a fair coin.

b. The outbound flight took longer on 11of the 12days. Based on your result in part (a), what conclusion would you make about the Emirates pilot’s suspicion?

In an experiment to learn whether substance M can help restore memory, the brains of 20rats were treated to damage their memories. First, the rats were trained to run a maze. After a day, 10rats (determined at random) were given substance M and 7of them succeeded in the maze. Only 2of the 10control rats were successful. The two-sample z test for the difference in the true proportions

a. gives z=2.25,P<0.02 .

b. gives z=2.60,P<0.005 .

c. gives z=2.25,P<0.04 but not<0.02

d. should not be used because the Random condition is violated.

e. should not be used because the Large Counts condition is violated.

A survey asked a random sample of U.S. adults about their political party affiliation and how long they thought they would survive compared to most people in their community if an apocalyptic disaster were to strike. The responses are summarized in the following two-way table.

Suppose we select one of the survey respondents at random. Which of the following probabilities is the largest?

a. P(Independent and Longer)

b. P(Independent or Not as long)

c. P(Democrat 3051526=0.200=20.0%| Not as long)

d. P(About as long 3051526=0.200=20.0%| Democrat)

e. P(About as long)

Candles A company produces candles. Machine 1 makes candles with a mean

length of 15cm and a standard deviation of 0.15cm. Machine 2 makes candles with a

mean length of 15cm and a standard deviation of 0.10cm. A random sample of 49

candles is taken from each machine. Let x ̄1−x ̄2 be the

difference (Machine 1 – Machine 2) in the sample mean length of candles. Describe the

shape, center, and variability of the sampling distribution of x ̄1−x ̄2.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free