Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Researchers suspect that Variety A tomato plants have a different average yield than Variety B tomato plants. To find out, researchers randomly select10Variety A and10Variety B tomato plants. Then the researchers divide in half each of10small plots of land in different locations. For each plot, a coin toss determines which half of the plot gets a Variety A plant; a Variety B plant goes in the other half. After harvest, they compare the yield in pounds for the plants at each location. The10differences (Variety A − Variety B) in yield are recorded. A graph of the differences looks roughly symmetric and single-peaked with no outliers. The mean difference is x-=0.343051526=0.200=20%x-A-B=0.34and the standard deviation of the differences is s A-B=0.833051526=0.200=20%=sA-B=0.83.LetμA-B=3051526=0.200=20%μA−B = the true mean difference (Variety A − Variety B) in yield for tomato plants of these two varieties.

The P-value for a test of H0: μA−B=03051526=0.200=20%versus Ha: μA−B≠0 is 0.227. Which of the following is the

correct interpretation of this P-value?

a. The probability that μA−B is0.227.

b. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference of0.34is0.227.

c. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference of0.34or greater is0.227.

d. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is0, the probability of getting a sample mean difference greater than or equal to0.34or less than or equal to −0.34is0.227.

e. Given that the true mean difference (Variety A – Variety B) in yield for these two varieties of tomato plants is not 0, the probability of getting a sample mean difference greater than or equal to 0.34or less than or equal to −0.34is0.227.

Short Answer

Expert verified

The correct option is (d) The true mean difference is0and the probability of getting a sample mean difference is greater than or equal to0.34or less than or equal to-0.34is0.227.

Step by step solution

01

Given Information

We are given theP-value and we have to find out which value will be satisfied from the given options.

02

Explanation

According to the question,

the H0:μA-B=0,Hα:μA-B0,x-=0.34andP-value=0.227

The P-value is known as the probability of obtaining the sample results or extreme. The true difference is0.34that, as there is no boundary, it is two-sided and that is why the P-value is greater than or equal to0.34or less than or equal to0.34and as the null hypothesis, the H value is considered to be zero, which implies that the true difference is also0.

Hence, option (d) is correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Mrs. Woods and Mrs. Bryan are avid vegetable gardeners. They use different fertilizers, and each claims that hers is the best fertilizer to use when growing tomatoes. Both agree to do a study using the weight of their tomatoes as the response variable. Each planted the same varieties of tomatoes on the same day and fertilized the plants on the same schedule throughout the growing season. At harvest time, each randomly selects 15 tomatoes from her garden and weighs them. After performing a two-sample t test on the difference in mean weights of tomatoes, they gett=5.24 andP=0.0008. Can the gardener with the larger mean claim that her fertilizer caused her tomatoes to be heavier?

a. Yes, because a different fertilizer was used on each garden.

b. Yes, because random samples were taken from each garden.

c. Yes, because the P-value is so small.

d. No, because the condition of the soil in the two gardens is a potential confounding variable.

e. No, because15<30

American-made cars Nathan and Kyle both work for the Department of Motor Vehicles (DMV), but they live in different states. In Nathan’s state, 80%of the registered cars are made by American manufacturers. In Kyle’s state, only 60%of the registered cars are made by American manufacturers. Nathan selects a random sample of 100cars in his state and Kyle selects a random sample of 70cars in his state. Let pn-pkbe the difference (Nathan’s state – Kyle’s state) in the sample proportion of cars made by American manufacturers.

a. What is the shape of the sampling distribution of pn-pk? Why?

b. Find the mean of the sampling distribution.

c. Calculate and interpret the standard deviation of the sampling distribution.

At a baseball game, 42of 65randomly selected people own an iPod. At a rock concert occurring at the same time across town, 34of 52randomly selected people own an iPod. A researcher wants to test the claim that the proportion of iPod owners at the two venues is different. A 90%confidence interval for the difference (Game − Concert) in population proportions is (0.154,0.138). Which of the following gives the correct outcome of the researcher’s test of the claim?

a. Because the confidence interval includes 0, the researcher can conclude that the proportion of iPod owners at the two venues is the same.

b. Because the center of the interval is -0.008, the researcher can conclude that a higher proportion of people at the rock concert own iPods than at the baseball game.

c. Because the confidence interval includes 0, the researcher cannot conclude that the proportion of iPod owners at the two venues is different.

d. Because the confidence interval includes more negative than positive values, the researcher can conclude that a higher proportion of people at the rock concert own iPods than at the baseball game.

e. The researcher cannot draw a conclusion about a claim without performing a significance test.

Quit smoking Nicotine patches are often used to help smokers quit. Does giving medicine to fight depression help? A randomized double-blind experiment assigned 244smokers to receive nicotine patches and another 245to receive both a patch and the antidepressant drug bupropion. After a year, 40subjects in the nicotine patch group had abstained from smoking, as had 87in the patch-plus-drug group. Construct and interpret a 99%confidence interval for the difference in the true proportion of smokers like these who would abstain when using bupropion and a nicotine patch and the proportion who would abstain when using only a patch.

Digital video disks A company that records and sells rewritable DVDs wants to compare the reliability of DVD fabricating machines produced by two different manufacturers. They randomly select 500DVDs produced by each fabricator and find that 484of the disks produced by the first machine are acceptable and 480of the disks produced by the second machine are acceptable. If p1,p2are the proportions of acceptable DVDs produced by the first and second machines, respectively, check if the conditions for calculating a confidence interval for p1-p2are met.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free