Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bag lunch? Phoebe has a hunch that older students at her very large high

school are more likely to bring a bag lunch than younger students because they have grown tired of cafeteria food. She takes a simple random sample of 80 sophomores and finds that 52of them bring a bag lunch. A simple random sample of 104seniors reveals that 78of them bring a bag lunch.

a. Do these data give convincing evidence to support Phoebe’s hunch at the α=0.05significance level?

b. Interpret the P-value from part (a) in the context of this study.

Short Answer

Expert verified

a. There is no convincing evidence.

b.Pvalue is22.96%

Step by step solution

01

Given Information

It is given that x1=52

x2=78

n1=80

n2=104

α=0.05

02

To explain do these data give convincing evidence to support Phoebe's hunch at theα=0.05 significance level or not.

Claim: Higher proportion for seniors.

Appropriate hypothesis is:

Null: H0:p1=p2

Alternative: Ha:p1<p2

p1is the proportion of high school sophomores that brings a bag lunch and p2is proportion of high school seniors that brings a bag lunch.

Conditions are:

Random: Samples are independent random samples.

Independent: 80sophomores<10%of all sophomores and 104seniors is less than 10%of all seniors.

Normal: Success are 52,78and failures are 80-52=28,104-78=26which are less than ten. Hence all conditions are satisfied.

Sample proportion is p^1=x1n1=5280=0.65

p^2=x2n2=78104=0.75

p^p=x1+x2n1+n2=52+7880+104=130184=0.7065

Test Statistic:

z=p^1-p^2-p1-p2p^p1-p^p1n1+1n2=0.65-0.70-00.7065(1-0.7065)180+1104-0.74

Probability is P=P(Z<-0.74)=0.2296

Now, P>0.05Fail to RejectH0

Hence, there is no convincing evidence to support Phoebe's hunch.

03

Determining P value

From above calculation, P=22.96%

There is 22.96%to get similar or more extreme when there is no difference between the proportion of sophomores who bring a bag lunch and the proportion of seniors who bring a bag lunch.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Candles A company produces candles. Machine 1 makes candles with a mean

length of 15cm and a standard deviation of 0.15cm. Machine 2 makes candles with a

mean length of 15cm and a standard deviation of 0.10cm. A random sample of 49

candles is taken from each machine. Let x ̄1−x ̄2 be the

difference (Machine 1 – Machine 2) in the sample mean length of candles. Describe the

shape, center, and variability of the sampling distribution of x ̄1−x ̄2.

The following dot plots show the average high temperatures (in degrees Celsius) for a sample of tourist cities from around the world. Both the January and July average high temperatures are shown. What is one statement that can be made with certainty from an Page Number: 704 analysis of the graphical display?

a. Every city has a larger average high temperature in July than in January.

b. The distribution of temperatures in July is skewed right, while the distribution of temperatures in January is skewed left.

c. The median average high temperature for January is higher than the median average high temperature for July.

d. There appear to be outliers in the average high temperatures for January and July.

e. There is more variability in average high temperatures in January than in July

Which of the following will increase the power of a significance test?

a. Increase the Type II error probability.

b. Decrease the sample size.

c. Reject the null hypothesis only if the P-value is less than the significance level.

d. Increase the significance level α.

e. Select a value for the alternative hypothesis closer to the value of the null hypothesis.

Which inference method?

a. Drowning in bathtubs is a major cause of death in children less than5years old. A random sample of parents was asked many questions related to bathtub safety. Overall,85%of the sample said they used baby bathtubs for infants. Estimate the percent of all parents of young children who use baby bathtubs.

b. How seriously do people view speeding in comparison with other annoying behaviors? A large random sample of adults was asked to rate a number of behaviors on a scale of1(no problem at all) to5(very severe problem). Do speeding drivers get a higher average rating than noisy neighbors?

c. You have data from interviews with a random sample of students who failed to graduate from a particular college in7years and also from a random sample of students who entered at the same time and did graduate within7years. You will use these data to estimate the difference in the percent's of students from rural backgrounds among dropouts and graduates.

d. Do experienced computer-game players earn higher scores when they play with someone present to cheer them on or when they play alone? Fifty teenagers with experience playing a particular computer game have volunteered for a study. We randomly assign25 of them to play the game alone and the other25to play the game with a supporter present. Each player’s score is recorded.

Artificial trees? An association of Christmas tree growers in Indiana wants to know if there is a difference in preference for natural trees between urban and rural households. So the association sponsored a survey of Indiana households that had a Christmas tree last year to find out. In a random sample of 160rural households, 64had a natural tree. In a separate random sample of 261urban households, 89had a natural tree. A 95%confidence interval for the difference (Rural – Urban) in the true proportion of households in each population that had a natural tree is -0.036to0.154. Does the confidence interval provide convincing evidence that the two population proportions are equal? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free