Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

TicksLyme disease is spread in the northeastern United States by infected ticks. The ticks are infected mainly by feeding on mice, so more mice result in more infected ticks. The mouse population, in turn, rises and falls with the abundance of acorns, their favored food. Experimenters studied two similar forest areas in a year when the acorn crop failed. To see if mice are more likely to breed when there are more acorns, the researchers added hundreds of thousands of acorns to one area to imitate an abundant acorn crop, while leaving the other area untouched. The next spring, 54of the 72mice trapped in the first area were in breeding condition, versus 10of the 17mice trapped in the second area.

a. State appropriate hypotheses for performing a significance test. Be sure to define the parameters of interest.

b. Check if the conditions for performing the test are met.

Short Answer

Expert verified

a. The hypothesis are: H0:p1=p2and Ha:p1>p2

b. All conditions are not met.

Step by step solution

01

Given Information

It is given that researched want to know that if population of mice with additional acorns that are in bleeding conditions larger than population of mice without additional acorns that are in breeding condition or not.

x1=54

x2=10

n1=72

n2=17

02

Appropriate Hypothesis

Claim is proportion is greater for mice in first area with the acorns.

Appropriate hypothesis is:

Null: H0:p1=p2

Alternative: Ha:p1>p2

p1is proportion of mice in an area with additional acorns that are in breeding conditions and p2 is proportion of mice in an area without additional acorns that are in breeding conditions.

03

Conditions

The conditions are:

Random: The mice are already living in those forests before any treatments were given and thus the mice were not randomly selected nor randomly assigned to a treatment. It is not satisfied.

Independent: In first forest, 72<10%of all mice in first forest and 17<10%of all mice in second forest.

Normal: There are ten success and 7failures which is less than 10.

All conditions are not satisfied. We can't use hypothesis test.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Men versus women The National Assessment of Educational Progress (NAEP)

Young Adult Literacy Assessment Survey interviewed separate random samples of840

men and 1077women aged 21to 25years.

The mean and standard deviation of scores on the NAEP’s test of quantitative skills were x1=272.40and s1=59.2for the men in the sample. For the women, the results were x ̄2=274.73and s2=57.5.

a. Construct and interpret a 90% confidence interval for the difference in mean score for

male and female young adults.

b. Based only on the interval from part (a), is there convincing evidence of a difference

in mean score for male and female young adults?

Thirty-five people from a random sample of 125 workers from Company A admitted

to using sick leave when they weren’t really ill. Seventeen employees from a random

sample of 68 workers from Company B admitted that they had used sick leave when

they weren’t ill. Which of the following is a 95% confidence interval for the difference

in the proportions of workers at the two companies who would admit to using sick

leave when they weren’t ill?

(a) 0.03±(0.28)(0.72)125+(0.25)(0.75)68

(b) 0.03±1.96(0.28)(0.72)125+(0.25)(0.75)68

(c) 0.03±1.645(0.28)(0.72)125+(0.25)(0.75)68

(d) 0.03±1.96(0.269)(0.731)125+(0.269)(0.731)68

(e)0.03±1.645(0.269)(0.731)125+(0.269)(0.731)68

In an experiment to learn whether substance M can help restore memory, the brains of 20rats were treated to damage their memories. First, the rats were trained to run a maze. After a day, 10rats (determined at random) were given substance M and 7of them succeeded in the maze. Only 2of the 10control rats were successful. The two-sample z test for the difference in the true proportions

a. gives z=2.25,P<0.02 .

b. gives z=2.60,P<0.005 .

c. gives z=2.25,P<0.04 but not<0.02

d. should not be used because the Random condition is violated.

e. should not be used because the Large Counts condition is violated.

Which inference method?

a. A city planner wants to determine if there is convincing evidence of a difference in the average number of cars passing through two different intersections. He randomly selects 12times between 6:00a.m. and 10:00p.m., and he and his assistant count the number of cars passing through each intersection during the 10-minute interval that begins at that time.

b. Are more than 75%of Toyota owners generally satisfied with their vehicles? Let’s design a study to find out. We’ll select a random sample of 400 Toyota owners. Then we’ll ask each individual in the sample, “Would you say that you are generally satisfied with your Toyota vehicle?”

c. Are male college students more likely to binge drink than female college students? The Harvard School of Public Health surveys random samples of male and female undergraduates at four-year colleges and universities about whether they have engaged in binge drinking.

d. A bank wants to know which of two incentive plans will most increase the use of its credit cards and by how much. It offers each incentive to a group of current credit card customers, determined at random, and compares the amount charged during the following 6 months.

Literacy Refer to Exercise 2.

a. Find the probability that the proportion of graduates who pass the test is at most 0.20higher than the proportion of dropouts who pass, assuming that the researcher’s report is correct.

b. Suppose that the difference (Graduate – Dropout) in the sample proportions who pass the test is exactly 0.20. Based on your result in part (a), would this give you reason to doubt the researcher’s claim? Explain your reasoning.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free