Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Quit smoking Nicotine patches are often used to help smokers quit. Does giving medicine to fight depression help? A randomized double-blind experiment assigned 244smokers to receive nicotine patches and another 245to receive both a patch and the antidepressant drug bupropion. After a year, 40subjects in the nicotine patch group had abstained from smoking, as had 87in the patch-plus-drug group. Construct and interpret a 99%confidence interval for the difference in the true proportion of smokers like these who would abstain when using bupropion and a nicotine patch and the proportion who would abstain when using only a patch.

Short Answer

Expert verified

Confidence Interval is(-0.2908,-0.0916).

Step by step solution

01

Given Information

It is given that x1=40

x2=87

n1=244

n2=245

c=99%=0.99

02

Checking the conditions

Random: Samples are independent random samples.

Independent: 224<10%of all smokers.

Normal: The success are 40,87and failures are 204,158which are greater than ten. So, is satisfied.

03

Calculations

Sample Proportion: p^1=x1n1=40244=0.1639

and p^2=x2n2=87245=0.3551

For 1-α=0.99, value of role="math" localid="1654639742329" zα/2=z0.005using table is

za/2=2.575

Hence, confidence interval is p^1-p^2-za/2×p^11-p^1n1+p^21-p^2n2

=(0.1639-0.3551)-2.575×0.1639(1-0.1639)244+0.3551(1-0.3551)245

-0.2908

and p^1-p^2+za/2×p^11-p^1n1+p^21-p^2n2

=(0.1639-0.3551)+2.575×0.1639(1-0.1639)244+0.3551(1-0.3551)245

-0.0916

Hence, confidence interval is(-0.2908,-0.0916)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Researchers suspect that Variety A tomato plants have a different average yield than Variety B tomato plants. To find out, researchers randomly select10Variety A and10Variety B tomato plants. Then the researchers divide in half each of10small plots of land in different locations. For each plot, a coin toss determines which half of the plot gets a Variety A plant; a Variety B plant goes in the other half. After harvest, they compare the yield in pounds for the plants at each location. The10differences (Variety A − Variety B) in yield are recorded. A graph of the differences looks roughly symmetric and single-peaked with no outliers. The mean difference is x-A-B=0.343051526=0.200=20%x-A-B=0.34and the standard deviation of the differences is s A-B=0.833051526=0.200=20%=sA-B=0.83.Let μA-B=3051526=0.200=20%μA−B = the true mean difference (Variety A − Variety B) in yield for tomato plants of these two varieties.

A 95% confidence interval forμA-B3051526=0.200=20%μA-Bis given by

a. 0.34±1.96(0.83)3051526=0.200=20%0.34±1.96(0.83)

b.0.34±1.96(0.8310)3051526=0.200=20%0.34±1.96(0.8310)

c. 0.34±1.812(0.8310)3051526=0.200=20%0.34±1.812(0.8310)

d. 0.34±2.262(0.83)3051526=0.200=20%0.34±2.262(0.83)

e.0.34±2.262(0.8310)3051526=0.200=20%0.34±2.262(0.8310)

A random sample of size n will be selected from a population, and the proportion p^3051526=0.200=20.0%p^ of those in the sample who have a Facebook page will be calculated. How would the margin of error for a 95% confidence interval be affected if the sample size were increased from 50to200 and the sample proportion of people who have a Facebook page is unchanged?

a. It remains the same.

b. It is multiplied by 2.

c. It is multiplied by 4.

d. It is divided by 2.

e. It is divided by 4.

Drive-thru or go inside? Many people think it’s faster to order at the drive-thru than to order inside at fast-food restaurants. To find out, Patrick and William used a random number generator to select10times over a 2week period to visit a local Dunkin’ Donuts restaurant. At each of these times, one boy ordered an iced coffee at the drive-thru and the other ordered an iced coffee at the counter inside. A coin flip determined who went inside and who went to the drive-thru. The table shows the times, in seconds, that it took for each boy to receive his iced coffee after he placed the order.

Do these data provide convincing evidence at the α=0.05level of a difference in the true mean service time inside and at the drive-thru for this Dunkin’ Donuts restaurant?

Steroids in high school A study by the National Athletic Trainers Association surveyed random samples of 1679high school freshmen and 1366 high school seniors in Illinois. Results showed that 34of the freshmen and 24of the seniors had used anabolic steroids. Steroids, which are dangerous, are sometimes used in an attempt to improve athletic performance. Researchers want to know if there is a difference in the proportion of all Illinois high school freshmen and seniors who have used anabolic steroids.

a. State appropriate hypotheses for performing a significance test. Be sure to define the parameters of interest.

b. Check if the conditions for performing the test are met.

Friday the 13th Do people behave differently on Friday the13th? Researchers collected data on the number of shoppers at a random sample of 45grocery stores on Friday the 6thand Friday the 13thin the same month. Then they calculated the difference (subtracting in the order6thminus13th ) in the number of shoppers at each store on these 2days. The mean difference is -46.5and the standard deviation of the differences is 178.0.

a. If the result of this study is statistically significant, can you conclude that the difference in shopping behavior is due to the effect of Friday the 13thon people’s behavior? Why or why not?

b. Do these data provide convincing evidence at theα=0.05level that the number of shoppers at grocery stores on these 2days differs, on average?

c. Based on your conclusion in part (a), which type of error—a Type I error or a Type II error—could you have made? Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free