Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Coaching and SAT scores Let’s first ask if students who are coached increased their scores significantly, on average.

a. You could use the information on the Coached line to carry out either a two-sample t test comparing Try 1 with Try 2 or a paired t test using Gain. Which is the correct test? Why?

b. Carry out the proper test. What do you conclude?

Short Answer

Expert verified

Part(a) We will use paired t test.

Part(b) There are proper evidience that crores of students who are coached increased their scores significantly

Step by step solution

01

Part(a) Step 1 : Given information

We need to find which test to carry out either a two-sample t test comparing Try 1 with Try 2 or a paired t test using Gain.

02

Part(a) Step 2 : Simplify

The researcher wants to know if the students are coached and if so, whether their scores will improve.

To use the paired t test if every value in one sample has a corresponding value in the other sample; otherwise, use the two-sample t test.
As each subject is dependent, we will use the paired t test in this scenario.

03

Part(b) Step 1 : Given information

We need to draw conclusion from test.

04

Part(b) Step 2 : Simplify

As given,

α=0.05n=427xD=29sD=59

Now, all conditions Random, Independent and Normal are fulfilled then it is right to take hypothesis test.

Mean difference is positive. So, it is either null hypothesis or alternative hypothesis.

H0:μD=0Ha:μD>0

Statistics of test :

t=xD-μDsDn=29-059427=10.157

Now,

df=n-1=427-1=426

Check df=100, P-value will be :

P<0.0005

P-value is less than significance level then reject null hypothesis,

Then P<0.05RejectH0

Therefore, there is convincing evidence that students who are coached increased their scores significantly.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to sleep researchers, if you are between the ages of 12and 18years old, you need 9hours of sleep to function well. A simple random sample of 28students was chosen from a large high school, and these students were asked how much sleep they got the previous night. The mean of the responses was 7.9hours with a standard deviation of 2.1hours. If we are interested in whether students at this high school are getting too little sleep, which of the following represents the appropriate null and alternative hypotheses ?

  1. H0:μ=7.9and Ha:μ<7.9
  2. H0:μ=7.9and Ha:μ7.9
  3. H0:μ=9and Ha:μ9
  4. H0:μ=9and width="69" height="24" role="math">Ha:μ<9
  5. H0:μ9andHa:μ9

Have a ball! Can students throw a baseball farther than a softball? To find out, researchers conducted a study involving 24randomly selected students from a large high school. After warming up, each student threw a baseball as far as he or she could and threw a softball as far as he she could, in a random order. The distance in yards for each throw was recorded. Here are the data, along with the difference (Baseball – Softball) in distance thrown, for each student:

a. Explain why these are paired data.

b. A boxplot of the differences is shown. Explain how the graph gives some evidence that students like these can throw a baseball farther than a softball.

c. State appropriate hypotheses for performing a test about the true mean difference. Be sure to define any parameter(s) you use.

d. Explain why the Normal/Large Sample condition is not met in this case. The mean difference (Baseball−Softball) in distance thrown for these 24students is xdiff = 6.54yards. Is this a surprisingly large result if the null hypothesis is true? To find out, we can perform a simulation assuming that students have the same ability to throw a baseball and a softball. For each student, write the two distances thrown on different note cards. Shuffle the two cards and designate one distance to baseball and one distance to softball. Then subtract the two distances (Baseball−Softball) . Do this for all the students and find the simulated mean difference. Repeat many times. Here are the results of 100trials of this simulation

e. Use the results of the simulation to estimate the P-value. What conclusion would you draw ?

Candles A company produces candles. Machine 1 makes candles with a mean

length of 15cm and a standard deviation of 0.15cm. Machine 2 makes candles with a

mean length of 15cm and a standard deviation of 0.10cm. A random sample of 49

candles is taken from each machine. Let x ̄1−x ̄2 be the

difference (Machine 1 – Machine 2) in the sample mean length of candles. Describe the

shape, center, and variability of the sampling distribution of x ̄1−x ̄2.

The P-value for the stated hypotheses is 0.002Interpret this value in the context of this study.

a. Assuming that the true mean road rage score is the same for males and females, there is a 0.002probability of getting a difference in sample means equal to the one observed in this study.

b. Assuming that the true mean road rage score is the same for males and females, there is a 0.002 probability of getting a difference in sample means at least as large in either direction as the one observed in this study.

c. Assuming that the true mean road rage score is different for males and females, there is a 0.002 probability of getting a difference in sample means at least as large in either direction as the one observed in this study.

d. Assuming that the true mean road rage score is the same for males and females, there is a 0.002 probability that the null hypothesis is true.

e. Assuming that the true mean road rage score is the same for males and females, there is a 0.002 probability that the alternative hypothesis is true.

Treating AIDS The drug AZT was the first drug that seemed effective in delaying

the onset of AIDS. Evidence for AZT’s effectiveness came from a large randomized

comparative experiment. The subjects were 870volunteers who were infected with HIV,

the virus that causes AIDS, but did not yet have AIDS. The study assigned 435of the

subjects at random to take 500milligrams of AZT each day and another 435to take a

placebo. At the end of the study, 38of the placebo subjects and 17of the AZT subjects

had developed AIDS.

a. Do the data provide convincing evidence at the α=0.05level that taking AZT lowers the proportion of infected people like the ones in this study

who will develop AIDS in a given period of time?

b. Describe a Type I error and a Type II error in this setting and give a consequence of

each error.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free