Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The standard deviation of Tis

(a)22

(b) 16

(c)15.62

(d)11.66

(e)4

Short Answer

Expert verified

The standard deviation of Tis option(d)11.66

Step by step solution

01

Concept Introduction

The standard deviation of a set of data describes how far values deviate from the mean, with a greater standard deviation indicating a wider range of variance. A low standard deviation implies that the values are close to the mean, whereas a high standard deviation shows that the data are dispersed over a wider range.

02

Explanation 

Given

μX=110

σX=10

μY=140

σY=12

Property mean and variance (if Xand Yare independent):

localid="1649858464290" μaX+bY=aμX+bμYσaX+bY2=a2μX2+b2μY2

Results we obtain:

localid="1649858468484" μX+Y/2=μX+12μY=110+12(140)=180σX+Y/2=σX2+122σX22=102+1412211.66.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Benford’s law and fraud A not-so-clever employee decided to fake his monthly expense report. He believed that the first digits of his expense amounts should be equally likely to be any of the numbers from 1to 9. In that case, the first digit Yof a randomly selected expense amount would have the probability distribution shown in the histogram.

(a). Explain why the mean of the random variable Y is located at the solid red line in the figure.

(b) The first digits of randomly selected expense amounts actually follow Benford’s law (Exercise 5). What’s the expected value of the first digit? Explain how this information could be used to detect a fake expense report.

(c) What’s P(Y>6)? According to Benford’s law, what proportion of first digits in the employee’s expense amounts should be greater than 6? How could this information be used to detect a fake expense report?

Ana is a dedicated Skee Ballplayer (see photo) who always rolls for the 50-point slot. The probability distribution of Ana's score Xon a single roll of the ball is shown below. You can check that μX=23.8and σX=12.63.

(a) A player receives one ticket from the game for every 10points scored. Make a graph of the probability distribution for the random variable T=number of tickets Ana gets on a randomly selected throw. Describe its shape.

(b) Find and interpret μT.

(c) Compute and interpret σT.

90. Normal approximation To use a Normal distribution to approximate binomial probabilities, why do we require that both np and n(1p) be at least 10?

49. Checking independence In which of the following games of chance would you be willing to assume independence of Xandlocalid="1649903939419" Y in making a probability model? Explain your answer in each case.
(a) In blackjack, you are dealt two cards and examine the total points localid="1649903945891" Xon the cards (face cards count localid="1649903950298" 10points). You can choose to be dealt another card and compete based on the total pointslocalid="1649903956461" Y on all three cards.
(b) In craps, the betting is based on successive rolls of two dice. localid="1649903966379" Xis the sum of the faces on the first roll, and localid="1649903971075" Yis the sum of the faces on the next roll.

86.1in 6wins As a special promotion for its 20-ounce bottles of soda, a soft drink company printed a message on the inside of each cap. Some of the caps said, “Please try again,” while others said, “You’re a winner!” The company advertised the promotion with the slogan “1in6wins a prize.” Suppose the company is telling the truth and that every 20-ounce
bottle of soda it fills has a1-in-6chance of being a winner. Seven friends each buy one 20-ounce bottle of the soda at a local convenience store. Let X= the number who win a prize.
(a) Explain why X is a binomial random variable.
(b) Find the mean and standard deviation of X. Interpret each value in context.

(c) The store clerk is surprised when three of the friends win a prize. Is this group of friends just lucky, or is the company’s 1-in-6 claim inaccurate? Compute P(X3) and use the result to justify your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free