Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random walk on Wall Street? The “random walk” theory of stock prices holds that price movements in disjoint time periods are independent of each other. Suppose that we record only whether the price is up or down each year, and that the probability that our portfolio rises in price in any one year is 0.65. (This probability is approximately correct for a portfolio containing equal dollar amounts of all common stocks listed on the New York Stock Exchange.)

(a) What is the probability that our portfolio goes up for three consecutive years?

(b) What is the probability that the portfolio’s value moves in the same direction (either up or down) for three consecutive years?

Short Answer

Expert verified

Part (a) The probability is 0.275

Part (b) The probability is 0.3175

Step by step solution

01

Part (a) Step 1. Given

P(Riseinoneyear)=0.65

02

Part (a) Step 2. Concept

Theprobabilityofanevent=numberoffavorableoutcomestotalnumberofoutcomes

03

Part (a) Step 3. Calculation 

The probability that your portfolio will increase in value over the next three years is determined as follows: P(Riseinthreeyears)=P(Riseinoneyear)30.275 is the required probability.

04

Part (b) Step 1. Calculation

The likelihood of a portfolio moving in the same direction in three years can be computed as follows:

The likelihood of a one-year fall is computed as follows:

P(Fallinoneyear)=1P(Riseinoneyear)=10.65=0.35

It is clear from the preceding section that P(Riseinthreeyears)=0.275

The chance of a drop in three consecutive years can now be computed as follows:

P(Fallinthreeconsecutiveyears)=0.353=0.043

The probability that is required is: P (Same direction) =0.275+0.043=0.3175

As a result, the chance is 0.3175

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In government data, a household consists of all occupants of a dwelling unit. Choose an American household at random and count the number of

people it contains. Here is the assignment of probabilities for your outcome:

The probability of finding 3people in a household is the same as the probability of finding 4people. These probabilities are marked ??? in the table of the distribution. The probability that a household contains 3 people must be

(a) 0.68(b) 0.32(c) 0.16(d) 0.08(e) between 0 and1, and we can say no more.

Liar, liar! Sometimes police use a lie detector (also known as a polygraph) to help determine whether a suspect is telling the truth. A lie detector test isn’t foolproof—sometimes it suggests that a person is lying when they’re actually telling the truth (a “false positive”). Other times, the test says that the suspect is being truthful when the person is actually lying (a “false negative”). For one brand of polygraph machine, the probability of a false positive is 0.08.
(a) Interpret this probability as a long-run relative frequency.
(b) Which is a more serious error in this case: a false positive or a false negative? Justify your answer.

Teens online We saw in an earlier example (page 319) that 93% of teenagers are online and that 55% of online teens have posted a profile on a social-networking site. Of online teens with a profile, 76% have placed comments on a friend’s blog. What percent of all teens are online, have a profile, and comment on a friend’s blog? Show your work.

A Titanic disaster In 1912the luxury liner Titanic, on its first voyage across the Atlantic, struck an iceberg and sank. Some passengers got off the ship in lifeboats, but many died. The two-way table gives information about adult passengers who lived and who died, by class of travel. Suppose we choose an adult passenger at random.

(a) Given that the person selected was in first class, what’s the probability that he or she survived?

(b) If the person selected survived, what’s the probability that he or she was a third-class passenger?

Lotto In the United Kingdom’s Lotto game, a player picks six numbers from 1 to 49 for each ticket. Rosemary bought one ticket for herself and one for each of her four adult children. She had the lottery computer randomly select the six numbers on each ticket. When the six winning numbers were drawn, Rosemary was surprised to find that none of these numbers appeared on any of the five Lotto tickets she had bought. Should she be? Design and carry

out a simulation to answer this question. Follow the four-step process.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free