Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Rainy days The TV weatherman says, “There’s a 30% chance of rain tomorrow.” Explain what this statement means.

  • Use simulation to model chance behavior.

Short Answer

Expert verified

It will rain tomorrow.

Step by step solution

01

Step 1. Given Information

We need to clarify what the statement "there's a 30% chance of rain tomorrow" implies.

02

Step 2. Explanation

If the weather conditions are similar to today's, it is predicted that it will rain 30% of the time the next day. As a result, it will rain tomorrow on roughly 30% of days with identical weather conditions to today (or tomorrow's weather condition).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You read in a book about bridge that the probability that each of the four players is dealt exactly one ace is about 0.11 This means that (a) in every100 bridge deals, each player has one ace exactly 11 times.

(b) in one million bridge deals, the number of deals on which each player has one ace will be exactly 110,000

(c) in a very large number of bridge deals, the percent of deals on which each player has one ace will be very close to 11%

(d) in a very large number of bridge deals, the average number of aces in a hand will be very close to 0.11

(e) None of these

Spinning a quarter With your forefinger, hold a new quarter (with a state featured on the reverse) upright, on its edge, on a hard surface. Then flick it with your other forefinger so that it spins for some time before it falls and comes to rest. Spin the coin a total of 25 times, and record the results.

(a) What’s your estimate for the probability of heads? Why?

(b) Explain how you could get an even better estimate.

Going pro Only 5%of male high school basketball, baseball, and football players go on to play at the college level. Of these, only1.7% enter major league professional sports. About 40% of the athletes who compete in college and then reach the pros have a career of more than3 years.16 What is the probability that a high school athlete who plays basketball, baseball, or football competes in college and then goes on to have a pro career of more than 3 years? Show your work.

Stoplight On her drive to work every day, Ilana passes through an intersection with a traffic light. The light has a probability of 1/3 of being green when she gets to the intersection. Explain how you would use each chance device to simulate whether the light is red or green on a given day.

(a) A six-sided die

(b) Table D of random digits

(c) A standard deck of playing cards

Roulette, An American roulette wheel has38slots with numbers 1through 36,0,and00,as shown in the figure. Of the numbered slots, 18are red, 18are black, and 2—the 0and 00—are green. When the wheel is spun, a metal ball is dropped onto the middle of the wheel. If the wheel is balanced, the ball

is equally likely to settle in any of the numbered slots. Imagine spinning a fair wheel once. Define events B: ball lands in a black slot, and E: ball lands in an even numbered slot. (Treat 0and 00as even numbers.)

(a) Make a two-way table that displays the sample space in terms of events B and E.

(b) Find P(B) and P(E).

(c) Describe the event “B and E” in words. Then find P(B and E). Show your work.

(d) Explain why P(B or E) ≠ P(B) + P(E). Then use the general addition rule to compute P(B or E).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free