Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Common names The Census Bureau says that the 10 most common names in the United States are (in order) Smith, Johnson, Williams, Brown, Jones, Miller, Davis, Garcia, Rodriguez, and Wilson. These names account for 9.6% of all U.S. residents. Out of curiosity, you look at the authors of the textbooks for your current courses. There are 9 authors in all. Would you be surprised if none of the names of these authors were among the 10most common? (Assume that authors’ names are independent and follow the same probability distribution as the names of all residents.)

Short Answer

Expert verified

P(9notcommon)=40.32% not surprising

Step by step solution

01

Step 1. Given Information

The top ten most frequent names in the United States account for9.6% of all residents.

02

Step 2. Concept used

Multiplication rule: P(AB)=P(AB)×P(B/A)

Complement rule: P(notA)=1P(A)

03

Step 3. Calculation

P(common)=9.6%=0.096

Complement rule:

P(notA)=1P(fail)=10.096=0.904

Multiplication rule:

P(AB)=P(A)×P(B)

Then it can calculate the likelihood of 9 uncommon names:

P(9notcommon)=(P(notcommon))9=(0.94)90.4032=40.32%

Because the probability is larger than 5%, there is a good chance of getting 9 uncommon names, which is not unusual.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sampling senators The two-way table below describes the members of the U.S Senate in a recent year. Male Female Democrats 4713 Republicans 364

(a) Who are the individuals? What variables are being measured?

(b) If we select a U.S. senator at random, what’s the probability that we choose

  • a Democrat?
  • a female?
  • a female Democrat?
  • a female or a Democrat?

Shuffle a standard deck of cards, and turn over the top two cards, one at a time. Define events A: first card is a heart, and B: second card is a heart.

In government data, a household consists of all occupants of a dwelling unit. Choose an American household at random and count the number of

people it contains. Here is the assignment of probabilities for your outcome:

The probability of finding 3people in a household is the same as the probability of finding 4people. These probabilities are marked ??? in the table of the distribution. The probability that a household contains 3 people must be

(a) 0.68(b) 0.32(c) 0.16(d) 0.08(e) between 0 and1, and we can say no more.

Brushing teeth, wasting water? A recent study reported that fewer than half of young adults turn off the water while brushing their teeth. Is the same true for teenagers? To find out, a group of statistics students asked an SRS of 60 students at their school if they usually brush with the water off. How many

students in the sample would need to say “No” to provide convincing evidence that fewer than half of the students at the school brush with the water off? The Fathom dot plot below shows the results of taking 200 SRSs of 60 students from a population in which the true proportion who brush with the

water off is 0.50.

(a) Suppose 27 students in the class’s sample say “No.” Explain why this result does not give convincing evidence that fewer than half of the school’s students brush their teeth with the water off.

(b) Suppose 18 students in the class’s sample say “No.” Explain why this result gives strong evidence that fewer than 50% of the school’s students brush

their teeth with the water off.

Color-blind men Refer to Exercise 25. Suppose we randomly select 4 U.S. adult males. What’s the probability that at least one of them is red-green

color-blind? Design and carry out a simulation to answer this question. Follow the four-step process.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free