Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mac or PC? A recent census at a major university revealed that40% of its students primarily used Macintosh computers (Macs). The rest mainly used

PCs. At the time of the census, 67% of the school’s students were undergraduates. The rest were graduate students. In the census, 23% of respondents were graduate students who said that they used PCs as their

main computers. Suppose we select a student at random from among those who were part of the census.

(a) Assuming that there were 10,000 students in the census, make a two-way table for this chance process.

(b) Construct a Venn diagram to represent this setting.

(c) Consider the event that the randomly selected student is a graduate student who uses a Mac. Write this event in symbolic form using the two events of interest that you chose in (b).

(d) Find the probability of the event described in (c). Explain your method.

Short Answer

Expert verified

Part (a) The table is

Part (b) Venn diagram is

Part (c) Event is P(MACGraduate)

Part (d)P(MACGraduate)=0.1

Step by step solution

01

Part (a) Step 1. Given Information

According to a study, Macintosh computers were used by40% of the students (Macs). The rest mostly used computers. 67 percent of the school's students were undergraduates at the time of the census. The rest of the group was made up of graduate students. Furthermore, 23% of respondents were graduate students who stated that PCs were their primary machines.

02

Part (a) Step 2. Concept Used

A Venn diagram is a visual representation of relationships between things or limited groups of objects using circles. Circles that overlap have similar qualities to circles that do not overlap. Venn diagrams are graphic representations of the similarities and differences between two concepts.

03

Part (a)  Step 3. Explanation

MAC's share of the market is 42%

67 percent of students are undergraduates.

Graduates as a percentage of the total population and PC=23%

In the census, there are 10,000 students. As a result, the two-way table becomes,

04

Part (b) Step 1. Explanation

Venn diagram becomes

05

Part (c) Step 1. Explanation

The probability of a college student using MACs and graduating is represented by the probability. This can be expressed symbolically as,

P(MACGraduate)

06

Part (d) Step 1. Calculation

Probability=NumberoffavorableoutcomesTotalpossibleoutcomes

There are a total of 20,000,000 possible outcomes.

Therefore, P(MACGraduate)=100010000=0.1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Preparing for the GMAT A company that offers courses to prepare students for the Graduate Management The admission Test (GMAT) has the following information about its customers: 20% are currently undergraduate students in business; 15% are undergraduate students in other fields of study; 60% are

college graduates who are currently employed, and 5% are college graduates who are not employed. Choose a customer at random.

(a) What’s the probability that the customer is currently an undergraduate? Which rule of probability did you use to find the answer?

(b) What’s the probability that the customer is not an undergraduate business student? Which rule of probability did you use to find the answer?

Probability models? In each of the following situations, state whether or not the given assignment of probabilities to individual outcomes is legitimate, that is, satisfies the rules of probability. If not, give specific reasons for your answer.

(a) Roll a die and record the count of spots on the up-face: P(1) = 0, P(2) = 1/6, P(3) = 1/3, P(4) = 1/3,

P(5) = 1/6, P(6) = 0.

(b) Choose a college student at random and record gender and enrollment status: P(female full-time) = 0.56, P(male full-time) = 0.44, P(female part-time) = 0.24, P(male part-time) = 0.17.

(c) Deal a card from a shuffled deck: P(clubs) = 12/52, P(diamonds) = 12/52, P(hearts) = 12/52,

P(spades) = 16/52.

Explain why events A and B are mutually exclusive

Tall people and basketball players Select an adult at random. Define events T: a person is over 6 feet tall, and B: a person is a professional basketball player. Rank the following probabilities from smallest to largest. Justify your answer.

P(T)P(B)P(T|B)P(B|T)

Myspace versus Facebook A recent survey suggests that 85% of college students have posted a profile on Facebook, 54%use Myspace regularly, and 42% do both. Suppose we select a college student at random.

(a) Assuming that there are 20 million college students, make a two-way table for this chance process.

(b) Construct a Venn diagram to represent this setting.

(c) Consider the event that the randomly selected college student has posted a profile on at least one of these two sites. Write this event in symbolic form

using the two events of interest that you chose in (b).

(d) Find the probability of the event described in (c).

Explain your method.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free