Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Scrabble Refer to Exercise 20. About 3% of the time, the first player in Scrabble can “bingo” by playing all 7 tiles on the first turn. How many games

of Scrabble would you expect to have to play, on average, for this to happen? Design and carry out a simulation to answer this question. Follow the four step

process.

Short Answer

Expert verified

The outcome will range from 1 to30

Step by step solution

01

Step 1. Given Information 

For each ticket, a player selects six numbers from 1to 49The winning numbers can be represented by two-digit numbers ranging from 1to 49in the simulation. Assume the numbers selected are 33,09,11,18,16and 45

02

Step 2. Concept Used 

We can't foresee the outcomes of a chance process, yet they have a regular distribution over a large number of repetitions. According to the law of large numbers, the fraction of times a specific event occurs in numerous repetitions approaches a single number. The likelihood of a chance outcome is its long-run relative frequency. A probability is a number between 0 (never happens) and 1 (happens frequently) (always occurs).

03

Step 3. Explanation   

Use two-digit numbers instead of three-digit numbers. The numerals 00to 02should stand for "bingo." No "bingo" should be represented by the numbers to 99Count how many two-digit numbers you'll need till you get "bingo." Rep this simulation as many times as you like. Until you get the first "bingo," you'll most likely get a result of 1 to 30 needed numbers.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Teens online We saw in an earlier example (page 319) that 93% of teenagers are online and that 55% of online teens have posted a profile on a social-networking site. Of online teens with a profile, 76% have placed comments on a friend’s blog. What percent of all teens are online, have a profile, and comment on a friend’s blog? Show your work.

The 28 students in Mr. Tabor’s AP Statistics class completed a brief survey. One of the questions asked whether each student was right- or left-handed. The two-way table summarizes the class data. Choose a student from the class at random. The events of interest are “female” and “right-handed.”

Teachers and college degrees Select an adult at random. Define events A: a person has earned a college degree, and T: person’s career is teaching. Rank the following probabilities from smallest to largest. Justify your answer.

P(A)P(T)P(A|T)P(T|A)

Income tax returns Here is the distribution of the adjusted gross income (in thousands of dollars) reported on individual federal income tax returns

in a recent year:

(a) What is the probability that a randomly chosen return shows an adjusted gross income of \(50,000 or more?

(b) Given that a return shows an income of at least \)50,000,what is the conditional probability that the income is at least $100,000?

Get rich A survey of 4826 randomly selected young adults (aged 19 to 25) asked, “What do you think are the chances you will have much more than a middle-class income at age 30?” The two-way table shows the responses.

14 Choose a survey respondent at random.

(a) Given that the person selected is male, what’s the probability that he answered “almost certain”?

(b) If the person selected said “some chance but probably not,” what’s the probability that the person is female?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free