Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Color-blind men About7%of men in the United States have some form of red-green color blindness. Suppose we randomly select one U.S. adult male at a time until we find one who is red-green color-blind. How many men would we expect to choose, on average? Design and carry out a simulation to answer this question. Follow the four-step process.

Short Answer

Expert verified

The result will be between 1 and20

Step by step solution

01

Step 1. Given Information  

Proportion of men in the United States having some form of red-green color blindness = 0.07

Random sample size of U.S adults,n=4

We have to find the probability that at least one of them is red-green color-blind using the four-step process of designing and carrying out simulation.

02

Step 2. Concept Used 

We can't foresee the outcomes of a chance process, yet they have a regular distribution over a large number of repetitions. According to the law of large numbers, the fraction of times a specific event occurs in numerous repetitions approaches a single number. The likelihood of a chance outcome is its long-run relative frequency. A probability is a number between 0 (never happens) and 1 (happens frequently) (always occurs).

03

Step 3. Explanation     

Use two-digit numbers instead of three-digit numbers. Allow the numerals 00to 06to symbolize a person who is colorblind in the red-green spectrum. Allow the numbers 07 to 99 to represent a person who is not colorblind to red and green. Count how many two-digit numbers you'll need to find the first person with red-green colorblindness. Rep this simulation as many times as you like. Until the first person with red-green colour blindness is located, you will most likely get a result of between 1 and 20 needed numbers.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During World War II, the British found that the probability that a bomber is lost through enemy action on a mission over occupied Europe was 0.05 Assuming that missions are independent, find the probability that a bomber returned safely from 20 missions.

Ten percent of U.S. households contain 5or more people. You want to simulate choosing a household at random and recording whether or not it contains 5or

more people. Which of these are correct assignments of digits for this simulation? (a) Odd = Yes (5or more people); Even = No (not 5or more people)

(b) 0= Yes; 1,2,3,4,5,6,7,8,9= No

(c) 5= Yes; 0,1,2,3,4,6,7,8,9= No

(d) All three are correct.

(e) Choices (b) and (c) are correct, but (a) is not.

Who eats breakfast? Students in an urban school were curious about how many children regularly eat breakfast. They conducted a survey, asking, “Do you eat breakfast on a regular basis?” All 595 students in the school responded to the survey. The resulting data are shown in the two-way table

below.7 Male Female Total Eats breakfast regularly 190110300 Doesn’t eat breakfast regularly 130165295Total320275595

(a) Who are the individuals? What variables are being measured?

(b) If we select a student from the school at random, what is the probability that we choose

  • a female?
  • someone who eats breakfast regularly?
  • a female who eats breakfast regularly?
  • a female or someone who eats breakfast

regularly?

Teachers and college degrees Select an adult at random. Define events A: a person has earned a college degree, and T: person’s career is teaching. Rank the following probabilities from smallest to largest. Justify your answer.

P(A)P(T)P(A|T)P(T|A)

In government data, a household consists of all occupants of a dwelling unit. Choose an American household at random and count the number of

people it contains. Here is the assignment of probabilities for your outcome:

The probability of finding 3people in a household is the same as the probability of finding 4people. These probabilities are marked ??? in the table of the distribution. The probability that a household contains 3 people must be

(a) 0.68(b) 0.32(c) 0.16(d) 0.08(e) between 0 and1, and we can say no more.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free