Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An old saying in golf is “You drive for show and you putt for dough.” The point is that good putting is more important than long driving for shooting low scores and hence winning money. To see if this is the case, data from a random sample of 69 of the nearly 1000 players on the PGA Tour’s world money list are examined. The average number of putts per hole and the player’s total winnings for the previous season are recorded. A least-squares regression line was fitted to the data. The following results were obtained from statistical software.

A 95%confidence interval for the slope Bof the population regression line is

(a)7,897,179±3,023,782

(b)7,897,179±6,047,564

(c)4,139,198±1,698,371

(d)4,139,198±3,328,807

(e)4,139,198±3,396,742

Short Answer

Expert verified

A 95%confidence interval for the slope Bof the population regression line is (e) 4,139,198±3,396,742.

Step by step solution

01

Given information

Given in the question that

b=4139198SEb=1698371n=69

02

Calculation

The confidence interval boundaries are

b±t×SEb

The degree of freedom is

df=n2=692=67>60

The critical t-value is shown in table in the row of df=60and column of c=95%

t=2.000

The confidence interval boundaries become then :

b±t×SEb=4139198±2.000×1698371=4139198±3396742

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a clinical trial 30, patients with a certain blood disease are randomly assigned to two groups. One group is then randomly assigned the currently marketed medicine, and the other group receives the experimental medicine. Each week, patients report to the clinic where blood tests are conducted. The lab technician is unaware of the kind of medicine the patient is taking, and the patient is also unaware of which medicine he or she has been given. This design can be described as

(a) a double-blind, completely randomized experiment, with the currently marketed medicine and the experimental medicine as the two treatments.

(b) a single-blind, completely randomized experiment, with the currently marketed medicine and the experimental medicine as the two treatments.

(c) a double-blind, matched pairs design, with the currently marketed medicine and the experimental medicine forming a pair.

(d) a double-blind, block design that is not a matched pairs design, with the currently marketed medicine and the experimental medicine as the two blocks.

(e) a double-blind, randomized observational study.

The slope β of the population regression line describes

(a) the exact increase in the selling price of an individual unit when its appraised value increases by \(1000

(b) the average increase in the appraised value in a population of units when the selling price increases by \)51000.

(c) the average increase in selling price in a population of units when the appraised value increases by \( 1000.

(d) the average selling price in a population of units when a unit's appraised value is 0.

(e) the average increase in appraised value in a sample of 16 units when the selling price increases by \) 1000.

Students in a statistics class drew circles of varying diameters and counted how many Cheerios could be placed in the circle. The scatterplot shows the results.

The students want to determine an appropriate equation for the relationship between diameter and the number of Cheerios. The students decide to transform the data to make it appear more linear before computing a least-squares regression line. Which of the following single transformations would be reasonable for them to try?

I. Take the square root of the number of Cheerios.

II. Cube the number of Cheerios.

III. Take the log of the number of Cheerios.

IV. Take the log of the diameter.

(a) I and II

(b) I and III

(c) II and III

(d) II and IV

(e) I and IV

The swinging pendulum Mrs. Hanrahan’s precalculus class collected data on the length (in centimeters) of a pendulum and the time (in seconds) the pendulum took to complete one back-and-forth swing (called its period). Here are their data:

(a) Make a reasonably accurate scatterplot of the data by hand, using length as the explanatory variable. Describe what you see. (b) The theoretical relationship between a pendulum’s length and its period is

period=2πglength

where gis a constant representing the acceleration due to gravity (in this case, g=980cm/s2). Use the graph below to identify the transformation that was used to linearize the curved pattern in part (a).

(c) Use the following graph to identify the transformation that was used to linearize the curved pattern in part (a).

Snowmobiles

(a) If we choose a survey respondent at random, what’s the probability that this individual (i) is a snowmobile owner? (ii) belongs to an environmental organization or owns a snowmobile? (iii) has never used a snowmobile given that the person belongs to an environmental organization?

(b) Are the events “is a snowmobile owner” and “belongs to an environmental organization” independent for the members of the sample? Justify your answer.

(c) If we choose two survey respondents at random, what’s the probability that (i) both are snowmobile owners? (ii) at least one of the two belongs to an environmental organization?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free