Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

AP3.25. Suppose the null and alternative hypotheses for a significance test are defined as H0:μ=40Hα:μ<40 Which of the following specific values for Ha will give the highest power?

(a) μ=38

(b)μ=39

(c) μ=42

(d)μ=41

(e)μ=42

Short Answer

Expert verified

μ=38would give the highest power.

Hence ,the correct option is (a)

Step by step solution

01

Step 1. Given information

It is given that we have to suppose that the null and alternative hypothesis for a significance test are defined as

H0:μ=40Hα:μ<40
02

Step 2. Simplify

The smaller number of the value of μthe easier it is reject the null hypothesis, therefore the solution would be the smallest number from the following options.

Hence ,the correct option is (a).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Information online (8.2,10.1)A random digit dialing sample of 2092adults found that 1318 used the Internet.45Of the users, 1041said that they expect businesses to have Web sites that give product information; 294of the 774nonusers said this.

(a) Construct and interpret a 95%confidence interval for the proportion of all adults who use the Internet.

(b) Construct and interpret a 95% confidence interval to compare the proportions of users and nonusers who expect businesses to have Web sites

A sample survey interviews SRSs of 500female college students and 550male college students. Each student is asked whether he or she worked for pay last summer. In all, 410 of the women and 484 of the men say “Yes.” The pooled sample proportion who worked last summer is about

(a) pC=1.70

(b)p^C=0.89

(c) p^C=0.88

(d) p^C=0.85

(e) p^C=0.82

Preventing drowning Drowning in bathtubs is a major cause of death in children less than 5 years old. A random sample of parents was asked many questions related to bathtub safety. Overall, 85% of the sample said they used baby bathtubs for infants. Estimate the percent of all parents of young children who use baby bathtubs.

Coaching and SAT scores (10.1) What proportion of students who take the SAT twice are coached? To answer this question, Jannie decides to construct a 99%confidence interval. Her work is shown below. Explain what’s wrong with Jannie’s method.

A 99%CI for p1-p2is

(0.135-0.865)±2.5750.135(0.865)3160+0.865(0.135)2733=-0.73±0.022=(-0.752,-0.708)

We are 99% confident that the proportion of students taking the SAT twice who are coached is between 71 and 75 percentage points lower than students who aren’t coached.

Expensive ads Consumers who think a product’s advertising is expensive often also think the product must be of high quality. Can other information undermine this effect? To find out, marketing researchers did an experiment. The subjects were 90 women from the clerical and administrative staff of a large organization. All subjects read an ad that described a fictional line of food products called “Five Chiefs.” The ad also described the major TV commercials that would soon be shown, an unusual expense for this type of product. The 45women who were randomly assigned to the control group read nothing else. The 45in the “undermine group” also read a news story headlined “No Link between Advertising Spending and New Product Quality.” All the subjects then rated the quality of Five Chefs products on a seven-point scale. The study report said, “The mean quality ratings were significantly lower in the undermine treatment (xA  4.56) than in the control treatment x¯C=5.05;t=2.64,P<0.01.

(a). Explain why the Random and Independent conditions are met in this case.

(b) The distribution of individual responses is not Normal, because there is only a seven-point scale. Why is it still proper to use a two-sample t-test?

(c) Interpret the P-value in context.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free