Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Environmental Protection Agency is charged with monitoring industrial emissions that pollute the atmosphere and water. So long as emission levels stay within specified guidelines, the EPA does not take action against the polluter. If the polluter is in violation of the regulations, the offender can be fined, forced to clean up the problem, or possibly closed. Suppose that for a particular industry the acceptable emission level has been set at no more than 5parts per million (5ppm). The null and alternative hypotheses are H0role="math" localid="1650298159260" :μ=5versus Ha=μ>5. Which of the following describes a Type II error?

(a) The EPA fails to find evidence that emissions exceed acceptable limits when, in fact, they are within acceptable limits.

(b) The EPA concludes that emissions exceed acceptable limits when, in fact, they are within acceptable limits.

(c) The EPA concludes that emissions exceed acceptable limits when, in fact, they do exceed acceptable limits.

(d) The EPA takes more samples to ensure that they make the correct decision.

(e) The EPA fails to find evidence that emissions exceed acceptable limits when, in fact, they do exceed acceptable limits.

Short Answer

Expert verified

The Type II error is that The EPA fails to find evidence that emissions exceed acceptable limits when, in fact, they do exceed acceptable limit i.e., answer is (e).

Step by step solution

01

Given Information

We are given that the null hypotheses H0:μ=5and the alternative hypotheses Ha:μ>5and

we have to find out the option that is describing the Type II error.

02

Reason

Now, In Type II error, The EPA is failing to reject the null hypotheses but in this null hypotheses is false.

As according to null hypotheses population mean emission is 5but alternative population mean emission is greater than5.

Hence, The Type II error is that (e)The EPA fails to find evidence that emissions exceed acceptable limits when, in fact, they do exceed acceptable limits.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The level of cholesterol in the blood for all men aged 20to 34follows a Normal distribution with mean 188milligrams per deciliter (mg/dl) and a standard deviation 41mg/dl. For 14-year-old boys, blood cholesterol levels follow a Normal distribution with a mean 170mg/dl and a standard deviation of 30mg/dl.

(a) Let M =the cholesterol level of a randomly selected 20to 34-year-old man and B =the cholesterol level of a randomly selected 14-year-old boy. Describe the shape, center, and spread of the distribution ofM-B

(b) Find the probability that a randomly selected 14-year-old boy has higher cholesterol than a randomly selected man aged 20to34. Show your work.

Refer to Exercise 36. Suppose we select independent SRSs of 16 young men and 9 young women and calculate the sample mean heights xMandxW

(a) Describe the shape, center, and spread of the sampling distribution of xM-xW

(b) Find the probability of getting a difference in sample means x¯M-x¯Wthat’s greater than or equal to 2inches. Show your work.

(c) Should we be surprised if the sample mean height for the young women is more than 2inches less than the sample mean height for the young men? Explain.

A random sample of 100 of a certain popular car model last year found that 20 had a certain minor defect in the brakes. The car company made an adjustment in the production process to try to reduce the proportion of cars with the brake problem. A random sample of 350 of this year's model found that 50 had the minor brake defect.

(a) Was the company's adjustment successful? Carry out an appropriate test to support your answer.

(b) Describe a Type I error and a Type Il error in this setting, and give al possible consequence of each.

The two-sample t statistic for the road rage study (male mean minus female mean) is t=3.18. The P-value for testing the hypotheses from the previous exercise satisfies

(a) 0.001<P<0.005.

(b) 0.0005<P<0.001.

(c) 0.001<P<0.002.

(d) 0.002<P<0.01.

(e) P>0.01.

Mrs. Woods and Mrs. Bryan are avid vegetable gardeners. They use different fertilizers, and each claims that hers is the best fertilizer to use when growing tomatoes. Both agree to do a study using the weight of their tomatoes as the response variable. They had each planted the same varieties of tomatoes on the same day and fertilized the plants on the same schedule throughout the growing season. At harvest time, they each randomly select 15tomatoes from their respective gardens and weigh them. After performing a two-sample t-test on the difference in mean weights of tomatoes, they get t=5.24and P=0.0008. Can the gardener with the larger mean claim that her fertilizer caused her tomatoes to be heavier?

(a) No, because the soil conditions in the two gardens is a potential confounding variable.

(b) No, because there was no replication.

(c) Yes, because a different fertilizer was used on each garden.

(d) Yes, because random samples were taken from each garden.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free