Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mrs. Woods and Mrs. Bryan are avid vegetable gardeners. They use different fertilizers, and each claims that hers is the best fertilizer to use when growing tomatoes. Both agree to do a study using the weight of their tomatoes as the response variable. They had each planted the same varieties of tomatoes on the same day and fertilized the plants on the same schedule throughout the growing season. At harvest time, they each randomly select 15tomatoes from their respective gardens and weigh them. After performing a two-sample t-test on the difference in mean weights of tomatoes, they get t=5.24and P=0.0008. Can the gardener with the larger mean claim that her fertilizer caused her tomatoes to be heavier?

(a) No, because the soil conditions in the two gardens is a potential confounding variable.

(b) No, because there was no replication.

(c) Yes, because a different fertilizer was used on each garden.

(d) Yes, because random samples were taken from each garden.

Short Answer

Expert verified

The gardener with the larger mean can not claim that her fertilizer caused her tomatoes to be heavier (a) No because the soil conditions in the two gardens are a potential confounding variable.

Step by step solution

01

Given Information

We are given that At harvest time, they each randomly select 15 tomatoes from their respective gardens and weigh them. After performing a two-sample t-test on the difference in mean weights of tomatoes, they get t=5.24and P=0.0008

02

Explanation

According to question for comparison , all factors must be same. whether the p-value is less than alpha. maybe, condition of one soil patch will be better than other soil patch.

P-value less than alpha means that there is some association.

Therefore, the gardener with the larger mean can not claim that her fertilizer caused her tomatoes to be heavier . because the soil condition in two gardens is a potential confounding variable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Thirty-five people from a random sample of 125workers from Company A admitted to using sick leave when they weren’t really ill. Seventeen employees from a random sample of 68workers from Company B admitted that they had used sick leave when they weren’t ill. A 95% confidence interval for the difference in the proportions of workers at the two companies who would admit to using sick leave when they weren’t ill is

(a) 0.03±(0.28)(0.72)125+(0.25)(0.75)68

(b) localid="1650367573248" 0.03±1.96(0.28)(0.72)125+(0.25)(0.75)68

(c) 0.03±1.645(0.28)(0.72)125+(0.25)(0.75)68

(d)

0.03±1.96(0.269)(0.731)125+(0.269)(0.731)68

(e) 0.03±1.645(0.269)(0.731)125+(0.269)(0.731)68

The level of cholesterol in the blood for all men aged 20to 34follows a Normal distribution with mean 188milligrams per deciliter (mg/dl) and a standard deviation 41mg/dl. For 14-year-old boys, blood cholesterol levels follow a Normal distribution with a mean 170mg/dl and a standard deviation of 30mg/dl.

(a) Let M =the cholesterol level of a randomly selected 20to 34-year-old man and B =the cholesterol level of a randomly selected 14-year-old boy. Describe the shape, center, and spread of the distribution ofM-B

(b) Find the probability that a randomly selected 14-year-old boy has higher cholesterol than a randomly selected man aged 20to34. Show your work.

40. Household size How do the numbers of people living in households in the United Kingdom (U.K.) and South Africa compare? To help answer this question, we used Census At School’s random data selector to choose independent samples of 50 students from each country. Here is a Fathom dotplot of the household sizes reported by the students in the survey.

Preventing drowning Drowning in bathtubs is a major cause of death in children less than 5 years old. A random sample of parents was asked many questions related to bathtub safety. Overall, 85% of the sample said they used baby bathtubs for infants. Estimate the percent of all parents of young children who use baby bathtubs.

Based on your answer to Question 3, would you be surprised if the difference in the proportion of red crackers in the two samples was p1^-p^2=-0.02? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free