Chapter 4: Problem 37
Comment on the sign of the quadratic expression \(x^{2}-5 x+6\) for all \(x \in R\). (1) \(x^{2}-5 x+6 \geq 0\) when \(2 \leq x \leq 3\) and (2) \(x^{2}-5 x+6 \leq 0\) when \(2 \leq x \leq 3\) and \(x^{2}-5 x+6<0\) when \(x<2\) or \(x>3 \quad x^{2}-5 x+6>0\) when \(x<2\) or \(x>3\) (3) \(\mathrm{x}^{2}-5 \mathrm{x}+6 \leq 0\) when \(-1 \leq \mathrm{x} \leq 6\) and (4) \(x^{2}-5 x+6 \geq 0\) when \(-1 \leq x \leq 6\) and \(\mathrm{x}^{2}-5 \mathrm{x}+6>0\) when \(\mathrm{x}<-1\) or \(\mathrm{x}>6 \quad \mathrm{x}^{2}-5 \mathrm{x}+6<0\) when \(\mathrm{x}<-1\) or \(\mathrm{x}>6\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.