Chapter 4: Problem 35
Find the roots of the equation \(\ell^{2}\left(\mathrm{~m}^{2}-\mathrm{n}^{2}\right) \mathrm{x}^{2}+\mathrm{m}^{2}\left(\mathrm{n}^{2}-\ell^{2}\right) \mathrm{x}+\mathrm{n}^{2}\left(\ell^{2}-\mathrm{m}^{2}\right)=0\) (1) \(1, \frac{\mathrm{n}^{2}\left(\ell^{2}-\mathrm{m}^{2}\right)}{\ell^{2}\left(\mathrm{~m}^{2}-\mathrm{n}^{2}\right)}\) (2) \(1, \frac{-\mathrm{m}^{2}\left(\ell^{2}-\mathrm{n}^{2}\right)}{\ell^{2}\left(\mathrm{~m}^{2}-\mathrm{n}^{2}\right)}\) (3) \(1, \frac{\mathrm{n}^{2}\left(\ell^{2}+\mathrm{m}^{2}\right)}{\ell^{2}\left(\mathrm{~m}^{2}-\mathrm{n}^{2}\right)}\) (4) \(1, \frac{-m^{2}\left(\ell^{2}+n^{2}\right)}{\ell^{2}\left(m^{2}-n^{2}\right)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.