Chapter 10: Problem 27
\(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots \mathrm{A}_{\mathrm{n}}\) and \(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3} \ldots . \mathrm{B}_{\mathrm{n}}\) are non-singular square matrices order \(\mathrm{n}\) such that \(\mathrm{A}_{1} \mathrm{~B}_{1}=\mathrm{I}_{\mathrm{n}}, \mathrm{A}_{2} \mathrm{~B}_{2}=\mathrm{In}, \mathrm{A}_{3} \mathrm{~B}_{3}=\mathrm{In}-\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}\), then \(\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}-\mathrm{A}_{\mathrm{n}}\right)^{-1}=\) (1) \(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}-\ldots \mathrm{B}_{\mathrm{n}}\) (2) \(\mathrm{B}_{1}^{-1} \mathrm{~B}_{2}^{-1} \mathrm{~B}_{3}^{-1}-\mathrm{B}_{\mathrm{n}}^{-1}\) (3) \(\mathrm{B}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}-1} \mathrm{~B}_{\mathrm{n}-2}-\ldots_{1}\) (4) \(\mathrm{B}_{\mathrm{n}}{ }^{-1} \mathrm{~B}_{\mathrm{n}-1}{ }^{-1} \mathrm{~B}_{\mathrm{n}-2}{ }^{-1}-\mathrm{B}_{1}^{-1}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.