Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

FIBER IN CEREALS AS A PREDICTOR OF CALORIES In Example 9.10 on page \(592,\) we look at a model to predict the number of calories in a cup of breakfast cereal using the number of grams of sugars. In Exercises 9.64 and 9.65 , we give computer output with two regression intervals and information about a specific amount of sugar. Interpret each of the intervals in the context of this data situation. (a) The \(95 \%\) confidence interval for the mean response (b) The \(95 \%\) prediction interval for the response The intervals given are for cereals with 16 grams of sugars: Sugars 95 \(\mathrm{P}\) \(\begin{array}{rrr}\text { rs Fit } & \text { SE Fit } \\\ 6 & 157.88 & 7.10 & \text { (143.3 }\end{array}\) \(95 \% \mathrm{Cl}\) 35,172.42) \(9 \%\) \(\begin{array}{lllll}16 & 15788 & 7.10 & (143.35,172.42) & (101.46\end{array}\) 214.31)

Short Answer

Expert verified
The 95% confidence interval indicates that the true average calories for cereals with 16 grams of sugars is likely between 143.35 and 172.42. The 95% prediction interval allows us to predict that the calories in a single box of cereal with 16 grams of sugars will be between 101.46 and 214.31.

Step by step solution

01

Interpret the Confidence Interval

The 95% confidence interval given is (143.35, 172.42). This interval suggests that we can be 95% confident that the true average caloric content of all cereals with 16 grams of sugars lies within this range.
02

Interpret the Prediction Interval

The 95% prediction interval given is (101.46, 214.31). This means that we can predict with 95% certainty that the caloric content of an individual cereal box with 16 grams of sugars will fall within this range.
03

Understand The Difference Between Them

Note the difference between these two intervals. The confidence interval is about estimating the true population mean, while the prediction interval is about estimating individual data points.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Test the correlation, as indicated. Show all details of the test. Test for a negative correlation; \(r=-0.41\); \(n=18\).

Use the computer output (from different computer packages) to estimate the intercept \(\beta_{0},\) the slope \(\beta_{1},\) and to give the equation for the least squares line for the sample. Assume the response variable is \(Y\) in each case. $$ \begin{aligned} &\text { The regression equation is }\\\ &Y=808-3.66 \mathrm{~A}\\\ &\begin{array}{lrrrr} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 807.79 & 87.78 & 9.20 & 0.000 \\ \text { A } & -3.659 & 1.199 & -3.05 & 0.006 \end{array} \end{aligned} $$

In Exercises 9.11 to \(9.14,\) test the correlation, as indicated. Show all details of the test. Test for a positive correlation; \(r=0.35 ; n=30\).

We show an ANOVA table for regression. State the hypotheses of the test, give the F-statistic and the p-value, and state the conclusion of the test. $$ \begin{array}{l} \text { Analysis of Variance } \\ \begin{array}{lrrrr} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 1 & 303.7 & 303.7 & 1.75 & 0.187 \\ \text { Residual Error } & 174 & 30146.8 & 173.3 & & \\ \text { Total } & 175 & 30450.5 & & & \end{array} \end{array} $$

We show an ANOVA table for regression. State the hypotheses of the test, give the F-statistic and the p-value, and state the conclusion of the test. $$ \begin{aligned} &\text { Response: }\\\ &\begin{array}{lrrrrr} & \text { Df } & \text { Sum Sq } & \text { Mean Sq } & \text { F value } & \operatorname{Pr}(>\text { F) } \\ \text { ModelB } & 1 & 10.380 & 10.380 & 2.18 & 0.141 \\ \text { Residuals } & 342 & 1630.570 & 4.768 & & \\ \text { Total } & 343 & 1640.951 & & & \end{array} \end{aligned} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free