Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the computer output (from different computer packages) to estimate the intercept \(\beta_{0},\) the slope \(\beta_{1},\) and to give the equation for the least squares line for the sample. Assume the response variable is \(Y\) in each case. $$ \begin{array}{lrrrr} \text { Coefficients: } & \text { Estimate } & \text { Std.Error } & \mathrm{t} \text { value } & \mathrm{Pr}(>|\mathrm{t}|) \\ \text { (Intercept) } & 7.277 & 1.167 & 6.24 & 0.000 \\ \text { Dose } & -0.3560 & 0.2007 & -1.77 & 0.087 \end{array} $$

Short Answer

Expert verified
The intercept (\(\beta_0\)) is 7.277, the slope (\(\beta_1\)) is -0.3560, and the equation of the least squares line is \(\hat{Y} = 7.277 - 0.3560* Dose\).

Step by step solution

01

Identify the Intercept (\(\beta_0\))

The Intercept (\(\beta_0\)) is given in the output table under the 'Estimate' column next to '(Intercept)'. From the table, \(\beta_0 = 7.277\). This value represents the estimated value of \(Y\) when all other predictor variables are zero.
02

Identify the Slope (\(\beta_1\))

The Slope (\(\beta_1\)) is given in the output table under the 'Estimate' column next to 'Dose'. From the table, \(\beta_1 = -0.3560\). This value represents how much \(Y\) changes for each one-unit change in the predictor variable 'Dose'.
03

Formulate the Least Squares Line

The equation for the least squares line is always of the form \(\hat{Y} = \beta_0 + \beta_1X\). Based on the estimated values of \(\beta_0\) and \(\beta_1\) obtained in Step 1 and Step 2, the equation of the least squares line can be written as \(\hat{Y} = 7.277 - 0.3560* Dose\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Data 9.2 on page 592 , we introduce the dataset Cereal, which has nutrition information on 30 breakfast cereals. Computer output is shown for a linear model to predict Calories in one cup of cereal based on the number of grams of Fiber. Is the linear model effective at predicting the number of calories in a cup of cereal? Give the F-statistic from the ANOVA table, the p-value, and state the conclusion in context. The regression equation is Calories \(=119+8.48\) Fiber Analysis of Variance \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 1 & 7376.1 & 7376.1 & 7.44 & 0.011 \\ \text { Residual Error } & 28 & 27774.1 & 991.9 & & \\\ \text { Total } & 29 & 35150.2 & & & \end{array}\)

FIBER IN CEREALS AS A PREDICTOR OF CALORIES In Example 9.10 on page \(592,\) we look at a model to predict the number of calories in a cup of breakfast cereal using the number of grams of sugars. In Exercises 9.64 and 9.65 , we give computer output with two regression intervals and information about a specific amount of sugar. Interpret each of the intervals in the context of this data situation. (a) The \(95 \%\) confidence interval for the mean response (b) The \(95 \%\) prediction interval for the response The intervals given are for cereals with 10 grams of sugars: \(\begin{array}{rrrrr}\text { Sugars } & \text { Fit } & \text { SE Fit } & & 95 \% \text { Cl } & 95 \% \text { PI } \\ 10 & 132.02 & 4.87 & (122.04,142.01) & (76.60,187.45)\end{array}\)

Test the correlation, as indicated. Show all details of the test. Test for evidence of a linear association; \(r=0.28 ; n=10\)

Use this information to fill in all values in an analysis of variance for regression table as shown. $$ \begin{array}{|l|l|l|l|l|l|} \hline \text { Source } & \text { df } & \text { SS } & \text { MS } & \text { F-statistic } & \text { p-value } \\ \hline \text { Model } & & & & & \\ \hline \text { Error } & & & & & \\ \hline \text { Total } & & & & & \\ \hline \end{array} $$ SSModel \(=8.5\) with SSError \(=247.2\) and a sample size of \(n=25\).

A random sample of 50 countries is stored in the dataset SampCountries. Two variables in the dataset are life expectancy (LifeExpectancy) and percentage of government expenditure spent on health care (Health) for each country. We are interested in whether or not the percent spent on health care can be used to effectively predict life expectancy. (a) What are the cases in this model? (b) Create a scatterplot with regression line and use it to determine whether we should have any serious concerns about the conditions being met for using a linear model with these data. (c) Run the simple linear regression, and report and interpret the slope. (d) Find and interpret a \(95 \%\) confidence interval for the slope. (e) Is the percentage of government expenditure on health care a significant predictor of life expectancy? (f) The population slope (for all countries) is 0.467 . Is this captured in your \(95 \%\) CI from part (d)? (g) Find and interpret \(R^{2}\) for this linear model.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free