Chapter 9: Problem 11
In Exercises 9.11 to \(9.14,\) test the correlation, as indicated. Show all details of the test. Test for a positive correlation; \(r=0.35 ; n=30\).
Chapter 9: Problem 11
In Exercises 9.11 to \(9.14,\) test the correlation, as indicated. Show all details of the test. Test for a positive correlation; \(r=0.35 ; n=30\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Data 9.2 on page 592 , we introduce the dataset Cereal, which has nutrition information on 30 breakfast cereals. Computer output is shown for a linear model to predict Calories in one cup of cereal based on the number of grams of Fiber. Is the linear model effective at predicting the number of calories in a cup of cereal? Give the F-statistic from the ANOVA table, the p-value, and state the conclusion in context. The regression equation is Calories \(=119+8.48\) Fiber Analysis of Variance \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 1 & 7376.1 & 7376.1 & 7.44 & 0.011 \\ \text { Residual Error } & 28 & 27774.1 & 991.9 & & \\\ \text { Total } & 29 & 35150.2 & & & \end{array}\)
Show some computer output for fitting simple linear models. State the value of the sample slope for each model and give the null and alternative hypotheses for testing if the slope in the population is different from zero. Identify the p-value and use it (and a \(5 \%\) significance level) to make a clear conclusion about the effectiveness of the model.$$ \begin{array}{lrrrr} \text { Coefficients: } & \text { Estimate } & \text { Std.Error } & \mathrm{t} \text { value } & \operatorname{Pr}(>|\mathrm{t}|) \\ \text { (Intercept) } & 7.277 & 1.167 & 6.24 & 0.000 \\ \text { Dose } & -0.3560 & 0.2007 & -1.77 & 0.087 \end{array} $$
In Exercises 9.62 and 9.63 , we give computer output with two regression intervals and information about the percent of calories eaten during the day. Interpret each of the intervals in the context of this data situation. (a) The \(95 \%\) confidence interval for the mean response (b) The \(95 \%\) prediction interval for the response The intervals given are for mice that eat \(50 \%\) of their calories during the day: \(\begin{array}{rrrrr}\text { DayPct } & \text { Fit } & \text { SE Fit } & 95 \% \mathrm{Cl} & 95 \% \mathrm{PI} \\ 50.0 & 7.476 & 0.457 & (6.535,8.417) & (2.786,12.166)\end{array}\)
Use the computer output (from different computer packages) to estimate the intercept \(\beta_{0},\) the slope \(\beta_{1},\) and to give the equation for the least squares line for the sample. Assume the response variable is \(Y\) in each case. $$ \begin{array}{lrrrr} \text { Coefficients: } & \text { Estimate } & \text { Std.Error } & \mathrm{t} \text { value } & \operatorname{Pr}(>|\mathrm{t}|) \\ \text { (Intercept) } & 77.44 & 14.43 & 5.37 & 0.000 \\ \text { Score } & -15.904 & 5.721 & -2.78 & 0.012 \end{array} $$
Test the correlation, as indicated. Show all details of the test. Test for a negative correlation; \(r=-0.41\); \(n=18\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.