Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Data 4.1 introduces a study in mice showing that even low-level light at night can interfere with normal eating and sleeping cycles. In the full study, mice were randomly assigned to live in one of three light conditions: LD had a standard light/dark cycle, LL had bright light all the time, and DM had dim light when there normally would have been darkness. Exercises 8.28 to 8.34 in Section 8.1 show that the groups had significantly different weight gain and time of calorie consumption. In Exercises 8.55 and \(8.56,\) we revisit these significant differences. Body Mass Gain Computer output showing body mass gain (in grams) for the mice after four weeks in each of the three light conditions is shown, along with the relevant ANOVA output. Which light conditions give significantly different mean body mass gain? \(\begin{array}{lrrr}\text { Level } & \mathrm{N} & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 7.859 & 3.009 \\ \text { LD } & 9 & 5.987 & 1.786 \\ \text { LL } & 9 & 11.010 & 2.624\end{array}\) One-way ANOVA: BM4Gain versus Light \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\ \text { Light } & 2 & 116.18 & 58.09 & 8.96 & 0.001 \\ \text { Error } & 25 & 162.10 & 6.48 & & \\ \text { Total } & 27 & 278.28 & & & \end{array}\)

Short Answer

Expert verified
There is a statistically significant difference in weight gain between at least one pair of the light conditions (DM, LD, and LL) as the p-value (0.001) is less than 0.05. To identify the specific pairs that are significantly different, post-hoc comparison is required.

Step by step solution

01

Interpreting the ANOVA table

The ANOVA table is read as follows: For the Light variable (referring to DM, LD, and LL), the degrees of freedom (DF) are 2 (The count of treatments minus 1). The sum of squares (SS), a measure of total variability, is 116.18. The mean square (MS), a measure of average variability, is 58.09. The F-value is 8.96 and the p-value is 0.001.
02

Determining significance

The aim is to test if there are differences between the means of the three groups. An F-value is calculated and the corresponding p-value is observed to find out whether the differences are due to random chance or are statistically significant. In this case, the p-value is 0.001 which is less than 0.05. Therefore, there is a significant difference in the three light conditions.
03

Identifying the significantly different groups

Although the groups are significantly different, the ANOVA test doesn't show which specific groups were significantly different from each other. To find the details, a post-hoc test is conducted. Since this post-hoc test results are not provided, it can only be concluded that at least one pair of groups are significantly different, but without additional information, the specific groups can't be identified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mice in the study had body mass measured throughout the study. Computer output showing body mass gain (in grams) after 4 weeks for each of the three light conditions is shown, and a dotplot of the data is given in Figure 8.6 . \(\begin{array}{lrrr}\text { Level } & \mathrm{N} & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 7.859 & 3.009 \\ \text { LD } & 8 & 5.926 & 1.899 \\ \text { LL } & 9 & 11.010 & 2.624\end{array}\) (a) In the sample, which group of mice gained the most, on average, over the four weeks? Which gained the least? (b) Do the data appear to meet the requirement of having standard deviations that are not dramatically different? (c) The sample sizes are small, so we check that the data are relatively normally distributed. We see in Figure 8.6 that we have no concerns about the DM and LD samples. However, there is an outlier for the LL sample, at 17.4 grams. We proceed as long as the \(z\) -score for this value is within ±3 . Find the \(z\) -score. Is it appropriate to proceed with ANOVA? (d) What are the cases in this analysis? What are the relevant variables? Are the variables categorical or quantitative?

We have seen that light at night increases weight gain in mice and increases the percent of calories consumed when mice are normally sleeping. What effect does light at night have on glucose tolerance? After four weeks in the experimental light conditions, mice were given a glucose tolerance test (GTT). Glucose levels were measured 15 minutes and 120 minutes after an injection of glucose. In healthy mice, glucose levels are high at the 15 -minute mark and then return to normal by the 120 -minute mark. If a mouse is glucose intolerant, levels tend to stay high much longer. Computer output is shown giving the summary statistics for both measurements under each of the three light conditions. (a) Why is it more appropriate to use a randomization test to compare means for the GTT-120 data? (b) Describe how we might use the 27 data values in GTT-120 to create one randomization sample. (c) Using a randomization test in both cases, we obtain a p-value of 0.402 for the GTT-15 data and a p-value of 0.015 for the GTT-120 data. Clearly state the results of the tests, using a \(5 \%\) significance level. Does light at night appear to affect glucose intolerance?

Exercises 8.46 to 8.52 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } & \\ \text { A } & 6 & 86.833 & 5.231 & \\ \text { B } & 6 & 76.167 & 6.555 & \\ \text { C } & 6 & 80.000 & 9.230 & \\ \text { D } & 6 & 69.333 & 6.154 & \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 3 & 962.8 & 320.9 & 6.64 & 0.003 \\ \text { Error } & 20 & 967.0 & 48.3 & & \\ \text { Total } & 23 & 1929.8 & & & \end{array}\) Find a \(95 \%\) confidence interval for the difference in the means of populations \(\mathrm{C}\) and \(\mathrm{D}\).

Exercises 8.46 to 8.52 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } & \\ \text { A } & 6 & 86.833 & 5.231 & \\ \text { B } & 6 & 76.167 & 6.555 & \\ \text { C } & 6 & 80.000 & 9.230 & \\ \text { D } & 6 & 69.333 & 6.154 & \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 3 & 962.8 & 320.9 & 6.64 & 0.003 \\ \text { Error } & 20 & 967.0 & 48.3 & & \\ \text { Total } & 23 & 1929.8 & & & \end{array}\) Test for a difference in population means between groups \(\mathrm{B}\) and \(\mathrm{D} .\) Show all details of the test.

Some computer output for an analysis of variance test to compare means is given. (a) How many groups are there? (b) State the null and alternative hypotheses. (c) What is the p-value? (d) Give the conclusion of the test, using a \(5 \%\) significance level. \(\begin{array}{lrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } \\ \text { Groups } & 4 & 1200.0 & 300.0 & 5.71 \\ \text { Error } & 35 & 1837.5 & 52.5 & \\ \text { Total } & 39 & 3037.5 & & \end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free