Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 8.41 to 8.45 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } \\ \text { A } & 5 & 10.200 & 2.864 \\ \text { B } & 5 & 16.800 & 2.168 \\ \text { C } & 5 & 10.800 & 2.387\end{array}\) \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 2 & 133.20 & 66.60 & 10.74 & 0.002 \\ \text { Error } & 12 & 74.40 & 6.20 & & \\ \text { Total } & 14 & 207.60 & & & \end{array}\) Is there sufficient evidence of a difference in the population means of the three groups? Justify your answer using specific value(s) from the output.

Short Answer

Expert verified
Yes, there is sufficient evidence of a difference in the population means of the three groups. This conclusion is based on the p-value, which is 0.002, far below the typical 0.05 cutoff for significance, and the F value, indicating that the variability among group means significantly exceeds that expected by chance.

Step by step solution

01

Identify the relevant values

From the second table, the F statistic is given as 10.74 and the p-value is given as 0.002.
02

Analyze the p-value

The p-value is 0.002, which is less than 0.05. Therefore, this means that if the null hypothesis were true (that is, all group means are equal), we would only get an F-statistic this large 0.2% of the time.
03

Conclusion

Since the p-value is less than the significance level (0.05), this provides sufficient evidence to reject the null hypothesis. Therefore, there is a significant difference in the means of the three groups.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 8.46 to 8.52 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } & \\ \text { A } & 6 & 86.833 & 5.231 & \\ \text { B } & 6 & 76.167 & 6.555 & \\ \text { C } & 6 & 80.000 & 9.230 & \\ \text { D } & 6 & 69.333 & 6.154 & \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 3 & 962.8 & 320.9 & 6.64 & 0.003 \\ \text { Error } & 20 & 967.0 & 48.3 & & \\ \text { Total } & 23 & 1929.8 & & & \end{array}\) Test for a difference in population means between groups \(A\) and \(B\). Show all details of the test.

Researchers hypothesized that the increased weight gain seen in mice with light at night might be caused by when the mice are eating. (As we have seen in the previous exercises, it is not caused by changes in amount of food consumed or activity level.) Perhaps mice with light at night eat a greater percentage of their food during the day, when they normally should be sleeping. Conditions for ANOVA are met and computer output for the percentage of food consumed during the day for each of the three light conditions is shown.\(\begin{array}{lrrr}\text { Level } & \mathrm{N} & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 55.516 & 10.881 \\ \text { LD } & 8 & 36.028 & 8.403 \\ \text { LL } & 9 & 76.573 & 9.646\end{array}\) (a) For mice in this sample on a standard light/dark cycle, what is the average percent of food consumed during the day? What percent is consumed at night? What about mice that had dim light at night? (b) Is there evidence that light at night influences when food is consumed by mice? Justify your answer with a p-value. Can we conclude that there is a cause-and-effect relationship?

More on Exercise and Stress Exercise 6.219 on page 465 introduces a study showing that exercise appears to offer some resiliency against stress, and Exercise 8.19 on page 556 follows up on this introduction. In the study, mice were randomly assigned to live in an enriched environment (EE), a standard environment (SE), or an impoverished environment (IE) for several weeks. Only the enriched environment provided opportunities for exercise. Half the mice then remained in their home cage \((\mathrm{HC})\) as control groups while half were subjected to stress (SD). The researchers were interested in how resilient the mice were in recovering from the stress. One measure of mouse anxiety is amount of time hiding in a dark compartment, with mice who are more anxious spending more time in darkness. The amount of time (in seconds) spent in darkness during one trial is recorded for all the mice and the means and the results of the ANOVA analysis are shown. There are eight mice in each of the six groups. \(\begin{array}{l}\text { Group: } & \text { IE:HC } \\ \text { Mean: } & 192 & 196 & 205 & 392 & 438 & \text { SE:HC } & \text { EE:HC } & \text { IE:SD } & \text { SE:SD EE:SD } \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } & \\ \text { Light } & 5 & 481776 & 96355.2 & 39.0 & 0.000 & \\ \text { Error } & 42 & 177835 & 2469.9 & & \\\ \text { Total } & 47 & 659611 & & & \end{array}\) (a) Is there a difference between the groups in the amount of time spent in darkness? Between which two groups are we most likely to find a difference in mean time spent in darkness? Between which two groups are we least likely to find a difference? (b) By looking at the six means, where do you think the differences are likely to lie? (c) Test to see if there is a difference in mean time spent in darkness between the IE:HC group and the EE:SD group (that is, impoverished but not stressed vs enriched but stressed).

The mice in the study had body mass measured throughout the study. Computer output showing body mass gain (in grams) after 4 weeks for each of the three light conditions is shown, and a dotplot of the data is given in Figure 8.6 . \(\begin{array}{lrrr}\text { Level } & \mathrm{N} & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 7.859 & 3.009 \\ \text { LD } & 8 & 5.926 & 1.899 \\ \text { LL } & 9 & 11.010 & 2.624\end{array}\) (a) In the sample, which group of mice gained the most, on average, over the four weeks? Which gained the least? (b) Do the data appear to meet the requirement of having standard deviations that are not dramatically different? (c) The sample sizes are small, so we check that the data are relatively normally distributed. We see in Figure 8.6 that we have no concerns about the DM and LD samples. However, there is an outlier for the LL sample, at 17.4 grams. We proceed as long as the \(z\) -score for this value is within ±3 . Find the \(z\) -score. Is it appropriate to proceed with ANOVA? (d) What are the cases in this analysis? What are the relevant variables? Are the variables categorical or quantitative?

Exercises 8.41 to 8.45 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } \\ \text { A } & 5 & 10.200 & 2.864 \\ \text { B } & 5 & 16.800 & 2.168 \\ \text { C } & 5 & 10.800 & 2.387\end{array}\) \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 2 & 133.20 & 66.60 & 10.74 & 0.002 \\ \text { Error } & 12 & 74.40 & 6.20 & & \\ \text { Total } & 14 & 207.60 & & & \end{array}\) Find a \(90 \%\) confidence interval for the difference in the means of populations \(\mathrm{B}\) and \(\mathrm{C}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free