Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Color affects us in many ways. For example, Exercise C.92 on page 498 describes an experiment showing that the color red appears to enhance men's attraction to women. Previous studies have also shown that athletes competing against an opponent wearing red perform worse, and students exposed to red before a test perform worse. \(^{3}\) Another study \(^{4}\) states that "red is hypothesized to impair performance on achievement tasks, because red is associated with the danger of failure." In the study, US college students were asked to solve 15 moderately difficult, five-letter, single-solution anagrams during a 5-minute period. Information about the study was given to participants in either red, green, or black ink just before they were given the anagrams. Participants were randomly assigned to a color group and did not know the purpose of the experiment, and all those coming in contact with the participants were blind to color group. The red group contained 19 participants and they correctly solved an average of 4.4 anagrams. The 27 participants in the green group correctly solved an average of 5.7 anagrams and the 25 participants in the black group correctly solved an average of 5.9 anagrams. Work through the details below to test if performance is different based on prior exposure to different colors. (a) State the hypotheses. (b) Use the fact that sum of squares for color groups is 27.7 and the total sum of squares is 84.7 to complete an ANOVA table and find the F-statistic. (c) Use the F-distribution to find the p-value. (d) Clearly state the conclusion of the test.

Short Answer

Expert verified
The null hypothesis is rejected. There is significant statistical evidence to say that the performance is different based on exposure to different colors. The mean number of anagrams solved varies between different color groups.

Step by step solution

01

State the Hypotheses

Null hypothesis (H0): The means are all equal, there is no color effect, i.e., μ1 = μ2 = μ3. Alternative hypothesis (Ha): At least one mean is different, i.e., not all means are equal, demonstrating the effect of color.
02

Calculate the F-statistic

The formula for F-statistic in an ANOVA test is (Between group variability)/(Within group variability). The between group variability (SSB) is given as 27.7 and the total variability (SST) is 84.7. The within group variability (SSW) can be calculated by subtracting the SSB from SST, i.e., SSW = SST - SSB = 84.7 - 27.7 = 57. We know, degree of freedom for SSB (d.f_B) = 3 - 1 = 2 and for SSW (d.f_W) = total number of observations - number of groups = 71 - 3 = 68. Now we can calculate the mean square for between (MSB) = SSB / d.f_B = 27.7/2 = 13.85 and mean square for within (MSW) = SSW / d.f_W = 57/68 = 0.838. With these we can calculate, F = MSB / MSW = 13.85 / 0.838 = 16.52.
03

Calculate the P-value

Using an F-distribution table or statistical software to find the P-value associated with F(2,68), we get a P-value less than 0.01.
04

Conclusion

Since the P-value obtained in the previous step is less than any conventional level of significance (such as 0.05 or 0.01), the conclusion is to reject the null hypothesis. There is sufficient evidence to conclude that performance is different based on prior exposure to different colors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Data 4.1 introduces a study in mice showing that even low-level light at night can interfere with normal eating and sleeping cycles. In the full study, mice were randomly assigned to live in one of three light conditions: LD had a standard light/dark cycle, LL had bright light all the time, and DM had dim light when there normally would have been darkness. Exercises 8.28 to 8.34 in Section 8.1 show that the groups had significantly different weight gain and time of calorie consumption. In Exercises 8.55 and \(8.56,\) we revisit these significant differences. When Calories Are Consumed Researchers hypothesized that the increased weight gain seen in mice with light at night might be caused by when the mice are eating. Computer output for the percentage of food consumed during the day (when mice would normally be sleeping) for each of the three light conditions is shown, along with the relevant ANOVA output. Which light conditions give significantly different mean percentage of calories consumed during the day? \(\begin{array}{lrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 55.516 & 10.881 \\ \text { LD } & 9 & 36.485 & 7.978 \\ \text { LL } & 9 & 76.573 & 9.646\end{array}\) One-way ANOVA: Day/night consumption versus Light \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Light } & 2 & 7238.4 & 3619.2 & 39.01 & 0.000 \\ \text { Error } & 25 & 2319.3 & 92.8 & & \\ \text { Total } & 27 & 9557.7 & & & \end{array}\)

Exercises 8.46 to 8.52 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } & \\ \text { A } & 6 & 86.833 & 5.231 & \\ \text { B } & 6 & 76.167 & 6.555 & \\ \text { C } & 6 & 80.000 & 9.230 & \\ \text { D } & 6 & 69.333 & 6.154 & \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 3 & 962.8 & 320.9 & 6.64 & 0.003 \\ \text { Error } & 20 & 967.0 & 48.3 & & \\ \text { Total } & 23 & 1929.8 & & & \end{array}\) Test for a difference in population means between groups \(A\) and \(D .\) Show all details of the test.

Exercises 8.41 to 8.45 refer to the data with analysis shown in the following computer output: \(\begin{array}{lrrr}\text { Level } & \text { N } & \text { Mean } & \text { StDev } \\ \text { A } & 5 & 10.200 & 2.864 \\ \text { B } & 5 & 16.800 & 2.168 \\ \text { C } & 5 & 10.800 & 2.387\end{array}\) \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Groups } & 2 & 133.20 & 66.60 & 10.74 & 0.002 \\ \text { Error } & 12 & 74.40 & 6.20 & & \\ \text { Total } & 14 & 207.60 & & & \end{array}\) Is there sufficient evidence of a difference in the population means of the three groups? Justify your answer using specific value(s) from the output.

Data 4.1 introduces a study in mice showing that even low-level light at night can interfere with normal eating and sleeping cycles. In the full study, mice were randomly assigned to live in one of three light conditions: LD had a standard light/dark cycle, LL had bright light all the time, and DM had dim light when there normally would have been darkness. Exercises 8.28 to 8.34 in Section 8.1 show that the groups had significantly different weight gain and time of calorie consumption. In Exercises 8.55 and \(8.56,\) we revisit these significant differences. Body Mass Gain Computer output showing body mass gain (in grams) for the mice after four weeks in each of the three light conditions is shown, along with the relevant ANOVA output. Which light conditions give significantly different mean body mass gain? \(\begin{array}{lrrr}\text { Level } & \mathrm{N} & \text { Mean } & \text { StDev } \\ \text { DM } & 10 & 7.859 & 3.009 \\ \text { LD } & 9 & 5.987 & 1.786 \\ \text { LL } & 9 & 11.010 & 2.624\end{array}\) One-way ANOVA: BM4Gain versus Light \(\begin{array}{lrrrrr}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\ \text { Light } & 2 & 116.18 & 58.09 & 8.96 & 0.001 \\ \text { Error } & 25 & 162.10 & 6.48 & & \\ \text { Total } & 27 & 278.28 & & & \end{array}\)

Effects of Synchronization and Exertion on Closeness Exercise 8.16 on page 554 looks at possible differences in ratings of closeness to a group after doing a physical activity that involves either high or low levels of synchronization (HS or LS) and high or low levels of exertion (HE or LE). Students were randomly assigned to one of four groups with different combinations of these variables, and the change in their ratings of closeness to their group (on a 1 to 7 scale) were recorded. The data are stored in SynchronizedMovement and the means for each treatment group are given below, along with an ANOVA table that indicates a significant difference in the means at a \(5 \%\) level. \(\begin{array}{llrr}\text { Group } & \text { N } & \text { Mean } & \text { StDev } \\ \text { HS+HE } & 72 & 0.319 & 1.852 \\ \text { HS+LE } & 64 & 0.328 & 1.861 \\ \text { LS+HE } & 66 & 0.379 & 1.838 \\ \text { LS+LE } & 58 & -0.431 & 1.623\end{array}\) Analysis of Variance \(\begin{array}{lrrrrr}\text { Analysis or varlance } & & & \\ \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F-Value } & \text { P-Value } \\ \text { Group } & 3 & 27.04 & 9.012 & 2.77 & 0.042 \\ \text { Error } & 256 & 831.52 & 3.248 & & \\ \text { Total } & 259 & 858.55 & & & \end{array}\) The first three means look very similar, but the LS+LE group looks quite a bit different from the others. Is that a significant difference? Test this by comparing the mean difference in change in closeness ratings between the synchronized, high exertion activity group (HS+HE) and the nonsvnchronized. low exertion activity group (LS+LE).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free