Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7.5 to 7.8 , the categories of a categorical variable are given along with the observed counts from a sample. The expected counts from a null hypothesis are given in parentheses. Compute the \(\chi^{2}\) -test statistic, and use the \(\chi^{2}\) -distribution to find the p-value of the test. $$ \begin{array}{l} \hline \begin{array}{l} \text { Category } \\ \text { Observed } \\ \text { (Expected) } \end{array} & \begin{array}{c} \mathrm{A} \\ 38(30) \end{array} & \begin{array}{c} \mathrm{B} \\ 55(60) \end{array} & \begin{array}{c} \mathrm{C} \\ 79(90) \end{array} & \begin{array}{c} \mathrm{D} \\ 128(120) \end{array} \\ \hline \end{array} $$

Short Answer

Expert verified
The \(\chi^{2}\)-test statistic for the given data is 4.45. Based on this and the degrees of freedom (3), we can say that p-value is greater than 0.05. Therefore, we cannot reject the null hypothesis.

Step by step solution

01

Identify the observed and expected counts

The first step involves identifying the observed and expected counts for each category. For example, the observed count for category A is 38 and the expected count is 30. The same is done for categories B, C, and D.
02

Compute the \(\chi^{2}\) -test statistic

The second step is to compute the \(\chi^{2}\)-test statistic. This is calculated using the formula \(\chi^{2} = \sum((O-E)^2 / E)\), where O is the observed frequency and E is the expected frequency. For category A, the \(\chi^{2}\) contribution would be \((38-30)^2 / 30 = 2.13\). Repeat this process for categories B, C and D, and sum all these four values to obtain the total \(\chi^{2}\)-value which is \(2.13 + 0.42 + 1.37 + 0.53 = 4.45 \).
03

Find the p-value of the test

Finally, refer to a \(\chi^{2}\) distribution table or use a statistical computation tool to find the p-value that corresponds to the total \(\chi^{2}\)-value under degree of freedom = 3 (The degree of freedom is calculated as 4 - 1, because there are 4 categories). You will find that this \(\chi^{2}\)-value is greater than the critical value for significance level 0.05, implying that the null hypothesis can be accepted. However, the exact p-value requires more detailed tables or computation software.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Treatment for Cocaine Addiction Cocaine addiction is very hard to break. Even among addicts trying hard to break the addiction, relapse is common. (A relapse is when a person trying to break out of the addiction fails and uses cocaine again.) Data 4.7 on page 323 introduces a study investigating the effectiveness of two drugs, desipramine and lithium, in the treatment of cocaine addiction. The subjects in the six-week study were cocaine addicts seeking treatment. The 72 subjects were randomly assigned to one of three groups (desipramine, lithium, or a placebo, with 24 subjects in each group) and the study was double-blind. In Example 4.34 we test lithium vs placebo, and in Exercise 4.181 we test desipramine vs placebo. Now we are able to consider all three groups together and test whether relapse rate differs by drug. Ten of the subjects taking desipramine relapsed, 18 of those taking lithium relapsed, and 20 of those taking the placebo relapsed. (a) Create a two-way table of the data. (b) Find the expected counts. Is it appropriate to analyze the data with a chi-square test? (c) If it is appropriate to use a chi-square test, complete the test. Include hypotheses, and give the chi-square statistic, the p-value, and an informative conclusion. (d) If the results are significant, which drug is most effective? Can we conclude that the choice of treatment drug causes a change in the likelihood of a relapse?

Gender and ACTN3 Genotype We see in the previous two exercises that sprinters are more likely to have allele \(R\) and genotype \(R R\) versions of the ACTN3 gene, which makes these versions associated with fast-twitch muscles. Is there an association between genotype and gender? Computer output is shown for this chi-square test, using the control group in the study. In each cell, the top number is the observed count, the middle number is the expected count, and the bottom number is the contribution to the chi-square statistic. What is the p-value? What is the conclusion of the test? Is gender associated with the likelihood of having a "sprinting gene"? \(\begin{array}{lrrrr} & \text { RR } & \text { RX } & \text { XX } & \text { Total } \\ \text { Male } & 40 & 73 & 21 & 134 \\ & 40.26 & 69.20 & 24.54 & \\\ & 0.002 & 0.208 & 0.509 & \\ \text { Female } & 88 & 147 & 57 & 292 \\ & 87.74 & 150.80 & 53.46 & \\ & 0.001 & 0.096 & 0.234 & \\ \text { Total } & 128 & 220 & 78 & 426\end{array}\) \(\mathrm{Chi}-\mathrm{Sq}=1.050, \mathrm{DF}=2, \mathrm{P}\) -Value \(=0.592\)

In Exercises 7.5 to 7.8 , the categories of a categorical variable are given along with the observed counts from a sample. The expected counts from a null hypothesis are given in parentheses. Compute the \(\chi^{2}\) -test statistic, and use the \(\chi^{2}\) -distribution to find the p-value of the test. $$ \begin{array}{cccc} \hline \text { Category } & \text { A } & \text { B } & \text { C } \\ \text { Observed } & 61(50) & 35(50) & 54(50) \\ \text { (Expected) } & & & \\ \hline \end{array} $$

One True Love by Educational Level In Data 2.1 on page 48 , we introduce a study in which people were asked whether they agreed or disagreed with the statement that there is only one true love for each person. Table 7.29 gives a two-way table showing the answers to this question as well as the education level of the respondents. A person's education is categorized as HS (high school degree or less), Some (some college), or College (college graduate or higher). Is the level of a person's education related to how the person feels about one true love? If there is a significant association between these two variables, describe how they are related. $$ \begin{array}{l|rrr|r} \hline & \text { HS } & \text { Some } & \text { College } & \text { Total } \\\ \hline \text { Agree } & 363 & 176 & 196 & 735 \\ \text { Disagree } & 557 & 466 & 789 & 1812 \\ \text { Don't know } & 20 & 26 & 32 & 78 \\ \hline \text { Total } & 940 & 668 & 1017 & 2625 \\ \hline \end{array} $$

Which Is More Important: Grades, Sports, or Popularity? 478 middle school (grades 4 to 6 ) students from three school districts in Michigan were asked whether good grades, athletic ability, or popularity was most important to them. \({ }^{18}\) The results are shown below, broken down by gender: $$ \begin{array}{lccc} \hline & \text { Grades } & \text { Sports } & \text { Popular } \\ \hline \text { Boy } & 117 & 60 & 50 \\ \text { Girl } & 130 & 30 & 91 \end{array} $$ (a) Do these data provide evidence that grades, sports, and popularity are not equally valued among middle school students in these school districts? State the null and alternative hypotheses, calculate a test statistic, find a p-value, and answer the question. (b) Do middle school boys and girls have different priorities regarding grades, sports, and popularity? State the null and alternative hypotheses, calculate a test statistic, find a p-value, and answer the question.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free