Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Data 4.1 on page 258 introduces a study in which mice that had a dim light on at night (rather than complete darkness) ate most of their calories when they should have been resting. These mice gained a significant amount of weight, despite eating the same number of calories as mice kept in total darkness. The time of eating seemed to have a significant effect. We look here at the effect after 8 weeks. There were 10 mice in the group with dim light at night and they gained an average of \(7.9 \mathrm{~g}\) with a standard deviation of \(3.0 .\) We see in Figure 6.9 that the data are not heavily skewed and do not have extreme outliers. Use the t-distribution to find and interpret a \(90 \%\) confidence interval for weight gain. As always, define the parameter being estimated.

Short Answer

Expert verified
The 90% confidence interval for the average weight gain for mice exposed to dim light at night is approximately between 5.75g to 10.05g.

Step by step solution

01

Identify the Parameter

The parameter to be estimated is the population mean weight gain \(\mu\) for mice who were exposed to dim light at night.
02

Compute the Sample Mean and Standard Deviation

From the exercise, it was given that the sample mean (x̄) is 7.9g and the sample standard deviation (s) is 3g. The number of mice (n) in the sample is 10.
03

Determine the Correct T Value

For a 90% confidence level and degree of freedom \(df = n-1 = 10-1 = 9\), the t-value (t*) can be found from the t-table, which is approximately 1.833.
04

Calculate the Confidence Interval

Using the formula \(CI = \bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}\), where \(CI\) is Confidence Interval, \(\bar{x}\) is the sample mean, \(t^*\) is the t-value, \(s\) is the standard deviation and \(n\) is the sample size. Substituting the given values, we find the confidence interval to be \(7.9 \pm 1.833 \cdot \frac{3}{\sqrt{10}}\).
05

Interpret the Confidence Interval

The resulting values become the lower and upper boundaries of the confidence interval. This interval is where we expect the true population mean weight gain to fall, with 90% confidence.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Quiz Timing A young statistics professor decided to give a quiz in class every week. He was not sure if the quiz should occur at the beginning of class when the students are fresh or at the end of class when they've gotten warmed up with some statistical thinking. Since he was teaching two sections of the same course that performed equally well on past quizzes, he decided to do an experiment. He randomly chose the first class to take the quiz during the second half of the class period (Late) and the other class took the same quiz at the beginning of their hour (Early). He put all of the grades into a data table and ran an analysis to give the results shown below. Use the information from the computer output to give the details of a test to see whether the mean grade depends on the timing of the quiz. (You should not do any computations. State the hypotheses based on the output, read the p-value off the output, and state the conclusion in context.) Two-Sample T-Test and Cl \begin{tabular}{lrrrr} Sample & \(\mathrm{N}\) & Mean & StDev & SE Mean \\ Late & 32 & 22.56 & 5.13 & 0.91 \\ Early & 30 & 19.73 & 6.61 & 1.2 \\ \multicolumn{3}{c} { Difference } & \(=\mathrm{mu}(\) Late \()\) & \(-\mathrm{mu}\) (Early) \end{tabular} Estimate for difference: 2.83 $$ \begin{aligned} &95 \% \mathrm{Cl} \text { for difference: }(-0.20,5.86)\\\ &\text { T-Test of difference }=0(\text { vs } \operatorname{not}=): \text { T-Value }=1.87\\\ &\text { P-Value }=0.066 \quad \mathrm{DF}=54 \end{aligned} $$

Do Hands Adapt to Water? Researchers in the UK designed a study to determine if skin wrinkled from submersion in water performed better at handling wet objects. \(^{62}\) They gathered 20 participants and had each move a set of wet objects and a set of dry objects before and after submerging their hands in water for 30 minutes (order of trials was randomized). The response is the time (seconds) it took to move the specific set of objects with wrinkled hands minus the time with unwrinkled hands. The mean difference for moving dry objects was 0.85 seconds with a standard deviation of 11.5 seconds. The mean difference for moving wet objects was -15.1 seconds with a standard deviation of 13.4 seconds. (a) Perform the appropriate test to determine if the wrinkled hands were significantly faster than unwrinkled hands at moving dry objects. (b) Perform the appropriate test to determine if the wrinkled hands were significantly faster than unwrinkled hands at moving wet objects.

In Exercises 6.34 to 6.36, we examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 6 \%\) when estimating a proportion. Within \(\pm 4 \%\). Within \(\pm 1 \%\). (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the desired margin of error.

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Potatoes after 20 Days After 20 days, 250 of the 500 fruit flies eating organic potatoes are still alive, while 130 of the 500 eating conventional potatoes are still alive.

The dataset ICUAdmissions, introduced in Data 2.3 on page \(69,\) includes information on 200 patients admitted to an Intensive Care Unit. One of the variables, Status, indicates whether each patient lived (indicated with a 0 ) or died (indicated with a 1 ). Use technology and the dataset to construct and interpret a \(95 \%\) confidence interval for the proportion of ICU patients who live.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free