Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.7 and 6.8 , compute the standard error for sample proportions from a population with the given proportion using three different sample sizes. What effect does increasing the sample size have on the standard error? Using this information about the effect on the standard error, discuss the effect of increasing the sample size on the accuracy of using a sample proportion to estimate a population proportion. A population with proportion \(p=0.75\) for sample sizes of \(n=40, n=300,\) and \(n=1000 .\)

Short Answer

Expert verified
Upon computation, it's found that as the sample size increases, the standard error decreases. Therefore, an increase in sample size improves the accuracy of the sample proportion in estimating the population proportion.

Step by step solution

01

Calculate Standard Error for \(n=40\)

Substitute the given values \(p=0.75\) and \(n=40\) into the formula for standard error to get the value of SE: \(SE=\sqrt{0.75* (1-0.75)/40}\). Calculate to get the answer.
02

Calculate Standard Error for \(n=300\)

Similarly, substitute the given values \(p=0.75\) and \(n=300\) into the formula for standard error to get the value of SE: \(SE=\sqrt{0.75* (1-0.75)/300}\). Calculate to get the answer.
03

Calculate Standard Error for \(n=1000\)

Again, substitute the given values \(p=0.75\) and \(n=1000\) into the formula for standard error to get the value of SE: \(SE=\sqrt{0.75* (1-0.75)/1000}\). Calculate to get the answer.
04

Effect of increasing sample size on Standard Error

Upon computing the standard errors for the increasing sample sizes, it can be observed that as the sample size increases, the standard error decreases. This is because the standard error is inversely proportional to the square root of the sample size. So, as the sample size gets larger, the standard error gets smaller.
05

Discuss the effect on accuracy of estimation

The decrease in the standard error with an increase in sample size improves the accuracy of the sample proportion in estimating the population proportion. This is because a smaller standard error means that the sample proportion is expected to be closer to the population proportion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\mathbf{6 . 2 2 0}\) Diet Cola and Calcium Exercise B.3 on page 349 introduces a study examining the effect of diet cola consumption on calcium levels in women. A sample of 16 healthy women aged 18 to 40 were randomly assigned to drink 24 ounces of either diet cola or water. Their urine was collected for three hours after ingestion of the beverage and calcium excretion (in \(\mathrm{mg}\) ) was measured. The summary statistics for diet cola are \(\bar{x}_{C}=56.0\) with \(s_{C}=4.93\) and \(n_{C}=8\) and the summary statistics for water are \(\bar{x}_{W}=49.1\) with \(s_{W}=3.64\) and \(n_{W}=8 .\) Figure 6.20 shows dotplots of the data values. Test whether there is evidence that diet cola leaches calcium out of the system, which would increase the amount of calcium in the urine for diet cola drinkers. In Exercise \(\mathrm{B} .3\), we used a randomization distribution to conduct this test. Use a t-distribution here, after first checking that the conditions are met and explaining your reasoning. The data are stored in ColaCalcium.

Use a t-distribution to find a confidence interval for the difference in means \(\mu_{1}-\mu_{2}\) using the relevant sample results from paired data. Give the best estimate for \(\mu_{1}-\) \(\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using \(d=x_{1}-x_{2}\). A \(95 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the paired difference sample results \(\bar{x}_{d}=3.7, s_{d}=\) 2.1, \(n_{d}=30\)

In Exercises 6.34 to 6.36, we examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 6 \%\) when estimating a proportion. Within \(\pm 4 \%\). Within \(\pm 1 \%\). (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the desired margin of error.

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}>\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllllll} \hline \text { Situation } & 1 & 125 & 156 & 132 & 175 & 153 & 148 & 180 & 135 & 168 & 157 \\ \text { Situation } & 2 & 120 & 145 & 142 & 150 & 160 & 148 & 160 & 142 & 162 & 150 \\ \hline \end{array} $$

(a) Find the relevant sample proportions in each group and the pooled proportion. (b) Complete the hypothesis test using the normal distribution and show all details. Test whether people with a specific genetic marker are more likely to have suffered from clinical depression than people without the genetic marker, using the information that \(38 \%\) of the 42 people in a sample with the genetic marker have had clinical depression while \(12 \%\) of the 758 people in the sample without the genetic marker have had clinical depression.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free