Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.7 and 6.8 , compute the standard error for sample proportions from a population with the given proportion using three different sample sizes. What effect does increasing the sample size have on the standard error? Using this information about the effect on the standard error, discuss the effect of increasing the sample size on the accuracy of using a sample proportion to estimate a population proportion. A population with proportion \(p=0.4\) for sample sizes of \(n=30, n=200,\) and \(n=1000\).

Short Answer

Expert verified
For given population proportion \(p=0.4\), the standard error decreases as the sample size \(n\) increases from 30 to 200 and then to 1000, indicating that the estimate becomes more precise. Therefore, using a larger sample size gives a more accurate estimate of the population proportion.

Step by step solution

01

Calculate Standard Error for n=30

Plug \(p=0.4\) and \(n=30\) into the SE formula: SE = \( \sqrt{( 0.4 * (1-0.4) ) / 30} \) to get the value for the standard error when the sample size is 30.
02

Calculate Standard Error for n=200

Repeat the process with \(n=200\): SE = \( \sqrt{( 0.4 * (1-0.4) ) / 200} \) to get the value for the standard error when the sample size is 200.
03

Calculate Standard Error for n=1000

Repeat the process again with \(n=1000\): SE = \( \sqrt{( 0.4 * (1-0.4) ) / 1000} \), so we can have the value for the standard error when the sample size is 1000.
04

Analyze the effect of increasing sample size on the standard error

Compare the standard errors computed in steps 1, 2, and 3. As n increases, the SE decreases, which indicates that increasing the sample size can reduce the standard error of the estimate.
05

Discuss the effect on the accuracy of using a sample proportion to estimate a population proportion

The observed decrease in SE with increasing sample size indicates that as the sample size becomes larger, the estimate becomes more precise, i.e., closer to the true population proportion. This is because with a larger sample, there is less sampling variation. Hence, using a adequately large sample size will increase the accuracy of the sample proportion as an estimate of the population proportion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use a t-distribution to find a confidence interval for the difference in means \(\mu_{1}-\mu_{2}\) using the relevant sample results from paired data. Give the best estimate for \(\mu_{1}-\) \(\mu_{2},\) the margin of error, and the confidence interval. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using \(d=x_{1}-x_{2}\) A \(99 \%\) confidence interval for \(\mu_{1}-\mu_{2}\) using the paired data in the following table:. $$ \begin{array}{lccccc} \hline \text { Case } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ \hline \text { Treatment 1 } & 22 & 28 & 31 & 25 & 28 \\ \text { Treatment 2 } & 18 & 30 & 25 & 21 & 21 \\ \hline \end{array} $$

We examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 3 \%\) when estimating a proportion. First, find the sample size needed if we have no prior knowledge about the population proportion \(p\). Then find the sample size needed if we have reason to believe that \(p \approx 0.7\). Finally, find the sample size needed if we assume \(p \approx 0.9 .\) Comment on the relationship between the sample size and estimates of \(p\).

For each scenario, use the formula to find the standard error of the distribution of differences in sample means, \(\bar{x}_{1}-\bar{x}_{2}\) Samples of size 25 from Population 1 with mean 6.2 and standard deviation 3.7 and samples of size 40 from Population 2 with mean 8.1 and standard deviation 7.6

In Exercise \(6.107,\) we see that plastic microparticles are contaminating the world's shorelines and that much of the pollution appears to come from fibers from washing polyester clothes. The same study referenced in Exercise 6.107 also took samples from ocean beaches. Five samples were taken from each of 18 different shorelines worldwide, for a total of 90 samples of size \(250 \mathrm{~mL}\). The mean number of plastic microparticles found per \(250 \mathrm{~mL}\) of sediment was 18.3 with a standard deviation of 8.2 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per \(250 \mathrm{~mL}\) of beach sediment. (b) What is the margin of error? (c) If we want a margin of error of only ±1 with \(99 \%\) confidence, what sample size is needed?

Survival Status and Heart Rate in the ICU The dataset ICUAdmissions contains information on a sample of 200 patients being admitted to the Intensive Care Unit (ICU) at a hospital. One of the variables is HeartRate and another is Status which indicates whether the patient lived (Status \(=0)\) or died (Status \(=1\) ). Use the computer output to give the details of a test to determine whether mean heart rate is different between patients who lived and died. (You should not do any computations. State the hypotheses based on the output, read the p-value off the output, and state the conclusion in context.) Two-sample \(\mathrm{T}\) for HeartRate \(\begin{array}{lrrrr}\text { Status } & \text { N } & \text { Mean } & \text { StDev } & \text { SE Mean } \\ 0 & 160 & 98.5 & 27.0 & 2.1 \\ 1 & 40 & 100.6 & 26.5 & 4.2 \\ \text { Difference } & = & m u(0) & -\operatorname{mu}(1) & \end{array}\) Estimate for difference: -2.13 \(95 \% \mathrm{Cl}\) for difference: (-11.53,7.28) T-Test of difference \(=0\) (vs not \(=\) ): T-Value \(=-0.45\) P-Value \(=0.653\) DF \(=60\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free