Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.1 to \(6.6,\) if random samples of the given size are drawn from a population with the given proportion, find the standard error of the distribution of sample proportions. Samples of size 100 from a population with proportion 0.41

Short Answer

Expert verified
The standard error of the distribution of sample proportions is \( 0.049 \).

Step by step solution

01

Identify Given Values

First, identify the given values from the problem statement. The sample size \( n \) is 100 and the population proportion \( p \) is 0.41.
02

Insert values into formula

Next, insert these values into the formula for the standard error of the distribution of sample proportions. Which would be \( \sqrt{ \frac{ 0.41(1-0.41) }{ 100 } } \)
03

Evaluate the expression

Evaluate the expression \( \sqrt{ \frac{ 0.41(0.59) }{ 100 } } \) using calculation or a calculator to find the standard error.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each scenario, use the formula to find the standard error of the distribution of differences in sample means, \(\bar{x}_{1}-\bar{x}_{2}\) Samples of size 300 from Population 1 with mean 75 and standard deviation 18 and samples of size 500 from Population 2 with mean 83 and standard deviation 22

Plastic microparticles are contaminating the world's shorelines (see Exercise 6.108\()\), and much of this pollution appears to come from fibers from washing polyester clothes. \({ }^{27}\) The worst offender appears to be fleece, and a recent study found that the mean number of polyester fibers discharged into wastewater from washing fleece was 290 fibers per liter of wastewater, with a standard deviation of 87.6 and a sample size of 120 . (a) Find and interpret a \(99 \%\) confidence interval for the mean number of polyester microfibers per liter of wastewater when washing fleece. (b) What is the margin of error? (c) If we want a margin of error of only ±5 with \(99 \%\) confidence, what sample size is needed?

For each scenario, use the formula to find the standard error of the distribution of differences in sample means, \(\bar{x}_{1}-\bar{x}_{2}\) Samples of size 100 from Population 1 with mean 87 and standard deviation 12 and samples of size 80 from Population 2 with mean 81 and standard deviation 15

(a) Find the relevant sample proportions in each group and the pooled proportion. (b) Complete the hypothesis test using the normal distribution and show all details. Test whether males are less likely than females to support a ballot initiative, if \(24 \%\) of a random sample of 50 males plan to vote yes on the initiative and \(32 \%\) of a random sample of 50 females plan to vote yes.

In Exercises 6.152 and \(6.153,\) find a \(95 \%\) confidence interval for the difference in proportions two ways: using StatKey or other technology and percentiles from a bootstrap distribution, and using the normal distribution and the formula for standard error. Compare the results. Difference in proportion who favor a gun control proposal, using \(\hat{p}_{f}=0.82\) for 379 out of 460 females and \(\hat{p}_{m}=0.61\) for 318 out of 520 for males. (We found a \(90 \%\) confidence interval for this difference in Exercise 6.144.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free