Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A survey of 1000 adults in the US conducted in March 2011 asked "Do you favor or oppose 'sin taxes' on soda and junk food?" The proportion in favor of taxing these foods was \(32 \% .10\) (a) Find a \(95 \%\) confidence interval for the proportion of US adults favoring taxes on soda and junk food. (b) What is the margin of error? (c) If we want a margin of error of only \(1 \%\) (with \(95 \%\) confidence \()\), what sample size is needed?

Short Answer

Expert verified
The estimated 95% confidence interval for the proportion of US adults favoring taxes on soda and junk food is approximately (0.29, 0.35). The margin of error is about 0.03. And roughly 9604 participants are needed in the survey for a margin of error of only 1% with 95% confidence.

Step by step solution

01

Calculate confidence interval

We first calculate the 95% confidence interval using the formula \(p \pm z*(\sqrt{(p(1-p))/n})\). Given, p = 0.32 (or 32%), z = 1.96 for a 95% confidence level, and n = 1000, we substitute these values into the formula and get the confidence interval.
02

Identify the margin of error

To find the margin of error, we just need to subtract the lower limit of our confidence interval in step 1 from the given proportion p = 0.32. This will give us the margin of error.
03

Calculate required sample size

The formula for margin of error is \(E = z * \sqrt{(p(1-p))/n}\). We can rearrange this to solve for n. So, we have \(n = p(1-p)*(z/E)^2\). For a margin of error of 1% or 0.01, and using the previous values for p and z, we substitute these values into the formula and calculate the required sample size.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Data 5.1 on page \(375,\) we find a significant difference in the proportion of fruit flies surviving after 13 days between those eating organic potatoes and those eating conventional (not organic) potatoes. ask you to conduct a hypothesis test using additional data from this study. \(^{40}\) In every case, we are testing $$\begin{array}{ll}H_{0}: & p_{o}=p_{c} \\\H_{a}: & p_{o}>p_{c}\end{array}$$ where \(p_{o}\) and \(p_{c}\) represent the proportion of fruit flies alive at the end of the given time frame of those eating organic food and those eating conventional food, respectively. Also, in every case, we have \(n_{1}=n_{2}=500 .\) Show all remaining details in the test, using a \(5 \%\) significance level. Effect of Organic Raisins after 20 Days After 20 days, 275 of the 500 fruit flies eating organic raisins are still alive, while 170 of the 500 eating conventional raisins are still alive.

Football Air Pressure During the NFL's 2014 AFC championship game, officials measured the air pressure on game balls following a tip that one team's balls were under-inflated. In exercise 6.124 we found that the 11 balls measured for the New England Patriots had a mean psi of 11.10 (well below the legal limit) and a standard deviation of 0.40. Patriot supporters could argue that the under-inflated balls were due to the elements and other outside effects. To test this the officials also measured 4 balls from the opposing team (Indianapolis Colts) to be used in comparison and found a mean psi of \(12.63,\) with a standard deviation of 0.12. There is no significant skewness or outliers in the data. Use the t-distribution to determine if the average air pressure in the New England Patriot's balls was significantly less than the average air pressure in the Indianapolis Colt's balls.

In Exercises 6.34 to 6.36, we examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 6 \%\) when estimating a proportion. Within \(\pm 4 \%\). Within \(\pm 1 \%\). (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the desired margin of error.

Autism and Maternal Antidepressant Use A recent study \(^{41}\) compared 298 children with Autism Spectrum Disorder to 1507 randomly selected control children without the disorder. Of the children with autism, 20 of the mothers had used antidepressant drugs during the year before pregnancy or the first trimester of pregnancy. Of the control children, 50 of the mothers had used the drugs. (a) Is there a significant association between prenatal exposure to antidepressant medicine and the risk of autism? Test whether the results are significant at the \(5 \%\) level. (b) Can we conclude that prenatal exposure to antidepressant medicine increases the risk of autism in the child? Why or why not? (c) The article describing the study contains the sentence "No increase in risk was found for mothers with a history of mental health treatment in the absence of prenatal exposure to selective serotonin reuptake inhibitors [antidepressants]." Why did the researchers conduct this extra analysis?

As part of the same study described in Exercise 6.254 , the researchers also were interested in whether babies preferred singing or speech. Forty-eight of the original fifty infants were exposed to both singing and speech by the same woman. Interest was again measured by the amount of time the baby looked at the woman while she made noise. In this case the mean time while speaking was 66.97 with a standard deviation of \(43.42,\) and the mean for singing was 56.58 with a standard deviation of 31.57 seconds. The mean of the differences was 10.39 more seconds for the speaking treatment with a standard deviation of 55.37 seconds. Perform the appropriate test to determine if this is sufficient evidence to conclude that babies have a preference (either way) between speaking and singing.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free