Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 6.34 to 6.36, we examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give, with \(95 \%\) confidence, a margin of error within \(\pm 6 \%\) when estimating a proportion. Within \(\pm 4 \%\). Within \(\pm 1 \%\). (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the desired margin of error.

Short Answer

Expert verified
The required sample sizes are respectively 267 for a 6% margin of error, 600 for a 4% margin of error and 9604 for a 1% margin of error. As the margin of error decreases, the necessary sample size increases.

Step by step solution

01

Finding sample size with margin of error 6%

First, let's find the sample size needed for a margin of error of 6% or 0.06. We substitute \( p = q = 0.5 \), \( Z = 1.96 \) and \( E = 0.06 \) into the formula. The calculation is \( n = (1.96^2 * 0.5 * 0.5) / 0.06^2 = 267 \).
02

Finding sample size with margin of error 4%

Now we find the sample size for a margin of error of 4% or 0.04. We substitute \( p = q = 0.5 \), \( Z = 1.96 \) and \( E = 0.04 \) into the formula. The calculation is \( n = (1.96^2 * 0.5 * 0.5) / 0.04^2 = 600 \).
03

Finding sample size with margin of error 1%

Finally we determine the sample size for a 1% margin of error. Plugging in for \( p = q = 0.5 \), \( Z = 1.96 \) and \( E = 0.01 \) into the formula, gives \( n = (1.96^2 * 0.5 * 0.5) / 0.01^2 = 9604 \).
04

Commenting on the relationship between sample size and margin of error

From these calculations, it is clear that as the margin of error decreases (gets more specific), the necessary sample size increases substantially. This is because to get a more precise estimate, we would need more data.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use a t-distribution and the given matched pair sample results to complete the test of the given hypotheses. Assume the results come from random samples, and if the sample sizes are small, assume the underlying distribution of the differences is relatively normal. Assume that differences are computed using \(d=x_{1}-x_{2}\). Test \(H_{0}: \mu_{1}=\mu_{2}\) vs \(H_{a}: \mu_{1}>\mu_{2}\) using the paired data in the following table: $$ \begin{array}{lllllllllll} \hline \text { Situation } & 1 & 125 & 156 & 132 & 175 & 153 & 148 & 180 & 135 & 168 & 157 \\ \text { Situation } & 2 & 120 & 145 & 142 & 150 & 160 & 148 & 160 & 142 & 162 & 150 \\ \hline \end{array} $$

We examine the effect of different inputs on determining the sample size needed to obtain a specific margin of error when finding a confidence interval for a proportion. Find the sample size needed to give a margin of error to estimate a proportion within \(\pm 3 \%\) with \(99 \%\) confidence. With \(95 \%\) confidence. With \(90 \%\) confidence. (Assume no prior knowledge about the population proportion \(p\).) Comment on the relationship between the sample size and the confidence level desired.

Quebec vs Texas Secession In Example 6.4 on page 408 we analyzed a poll of 800 Quebecers, in which \(28 \%\) thought that the province of Quebec should separate from Canada. Another poll of 500 Texans found that \(18 \%\) thought that the state of Texas should separate from the United States. \({ }^{38}\) (a) In the sample of 800 people, about how many Quebecers thought Quebec should separate from Canada? In the sample of 500 , how many Texans thought Texas should separate from the US? (b) In these two samples, what is the pooled proportion of Texans and Quebecers who want to separate? (c) Can we conclude that the two population proportions differ? Use a two- tailed test and interpret the result.

In Exercises 6.150 and \(6.151,\) use StatKey or other technology to generate a bootstrap distribution of sample differences in proportions and find the standard error for that distribution. Compare the result to the value obtained using the formula for the standard error of a difference in proportions from this section. Sample A has a count of 30 successes with \(n=100\) and Sample \(\mathrm{B}\) has a count of 50 successes with \(n=250\).

Surgery in the ICU and Gender In the dataset ICUAdmissions, the variable Service indicates whether the ICU (Intensive Care Unit) patient had surgery (1) or other medical treatment (0) and the variable Sex gives the gender of the patient \((0\) for males and 1 for females.) Use technology to test at a \(5 \%\) level whether there is a difference between males and females in the proportion of ICU patients who have surgery.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free